
GOAT: Gradient Scheduling with
Collaborative In-Network Aggregation for

Distributed Training

Jin Fang
Gongming Zhao, Hongli Xu, Zhuolong Yu, Bingchen Shen, Liguang Xie

1

In-network Aggregation for DT

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary 2

Ø With the increasing complexity of machine learning (ML) applications, the scale of ML

tasks grows explosively

Ø Distributed training is proposed to meet the needs of training large-scale ML tasks

Ø Communication overhead has become the main bottleneck

Ø In-network Aggregation: utilize programmable switches to aggregate gradients within

the network

Problem: Switch Memory Limitation

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary 3

How to aggregate
with limited

switch memory?

Researchers

ØSwitch memory is used to buffer the intermedia aggregation value

ØCurrent programmable switch has limited on-chip memory
Ø Intel Tofino 1: 22MB

Ø Intel Tofino 2: 64 MB

ØSize of popular DNN models usually exceeds the size of switch memory
Ø ResNet-50: 98MB

Ø VGG-16: 528MB

Existing Solution

4Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Incoming gradient fragments

Switch

Mem 2

Mem 1N+1 1

N+2 2
M 3 2 1

Mem NN2N

mod N

Increase Memory Size
Ø Directly increasing the on-chip memory size

Ø TEA (SIGCOMM 20): utilizing external server memory to extend

Memory Sharing Scheme
Ø ATP (NSDI 21): manage and reuse the switch on-chip memory

High cost!

Additional latency!

A Motivating Example

5Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Memory sharing scheme requires gradient fragments arriving at switches simultaneously

PS

S1 Mem

W1

A1

B1

C1

A2

B2

C2

S2 Mem

A3

B3

C3

A4

B4

C4

S3 Mem

W2 W3 W4

A1 A2 A3 A4

A12 A34

A

A Motivating Example

6Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Asynchronously arriving gradient fragments will increase the aggregation overhead of the PS

PS

S1 Mem

W1

A1

B1

C1

A2

B2

C2

S2 Mem

A3

B3

C3

A4

B4

C4

S3 Mem

W2 W3 W4

A1
B1
C1

A Motivating Example

7Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø The aggregation overhead of the PS is 7

A Motivating Example

8Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Each switch buffers sub-model gradient to collaborative perform in-network aggregation

PS

S1 Mem

W1

A1

B1

C1

A2

B2

C2

S2 Mem

A3

B3

C3

A4

B4

C4

S3 Mem

W2 W3 W4

A1
B1
C1

A2
B2
C2

A3
B3
C3

A4
B4
C4

C

BA

A Motivating Example

9Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø The aggregation overhead of the PS is 3 (optimal)
Ø Incur additional scheduling cost?

GOAT Overview

10Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Where to buffer sub-model
gradients?

Ø In which node to aggregate
gradients?

Control plane

Data plane
ØModel partition

ØGradient filtering

ØGradient aggregation

ØGlobal aggregation

Problem Formulation

11Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

ØParameter server: 𝜶

Parameter Server Architecture

ØWorker set: 𝑾 = {𝒘𝟏, 𝒘𝟐, … ,𝒘 𝑾 }

DNN Model Training
ØGradient set of sub-model: 𝑮 = {𝒈𝟏, 𝒈𝟐, … , 𝒈 𝑮 }

Programmable Network
ØProgrammable switch set: 𝑺 = {𝒔𝟏, 𝒔𝟐, … , 𝒔 𝑺 }

Problem Formulation
Ø Objective: minimize the communication overhead

Ø Non-aggregated gradients sent from workers to aggregation nodes

Ø Aggregated gradients sent from switches to the PS

Ø Switch memory constraint

12

Ø Sub-model aggregation constraint

Ø Aggregation node constraint

Ø Assignment constraint

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Algorithm Design
Ø Convert the problem into an equivalent maximization problem

Ø So we only need to consider the total distance from switches to the PS

13Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Algorithm Design
Ø Solve the converted problem with a

knapsack-based randomized rounding
algorithm

14

Ø Relax the converted LP and obtain the
optimal solution

Ø Assign switches for sub-model gradients with
knapsacks

Ø Determine aggregation nodes for workers’
sub-model gradients according to switch
assignment

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Evaluation

15

ØHow fast can GOAT accelerate the distributed training tasks?

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Testbed

Simulation
ØCan GOAT handle the large-scale distributed task?

ØHow much can GOAT reduce the aggregation overhead?

ØCan GOAT handle the network dynamic?

Evaluation: Setup

16

Ø9 servers

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Topology

Workload
Ø2 DNN models: ResNet-18(44MB) and ResNet-50 (98MB)

Ø3 Wedge100BF-32x programmable switches

ØDataset: Cifar-100

ØAll connected with 100Gbps links

Evaluation: Setup

17

Ø Geryon (INFOCOM 20): design a communication scheduling scheme without in-network
aggregation

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Benchmark

Ø ATP (NSDI 21): perform in-network aggregation in the first encountered aggregation
node with available memory capacity

Ø ESA: design a priority-based memory preemption mechanism for in-network
aggregation

Evaluation: Throughput

18Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Each distributed training task contains 8 workers

Ø GOAT increases up to 53.3% in training throughput

Evaluation: Accuracy

19Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Record the test accuracy of training tasks in each epoch

Ø GOAT speeds up distributed training by 1.77x

Evaluation: Overhead

20Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Vary the number of workers from 4 to 16

Ø GOAT reduces aggregation overhead of the PS by 93.8%

Evaluation: Scalability

21Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Evaluate GOAT with two practical topologies and more workers

Ø GOAT reduces communication overhead by 63.1%

Evaluation: Network Dynamic

22Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Ø Vary the sending rate of workers to simulate network dynamic

Ø GOAT always achieves the least communication overhead

Summary

23

Goal
Ø Minimize the communication overhead of distributed training tasks with collaborative in-

network aggregation.

Challenges
Ø Sub-model gradient buffering

Ø Aggregation node selection

Ø Switch memory limitation

Solution
Ø Knapsack-based randomized rounding algorithm with a constant approximation ratio

Background | Motivation | Overview | Problem Formulation | Algorithm | Evaluation | Summary

Thank you!

24

IEEE/ACM IWQoS 2023

Committee, Reviewers, Volunteers

My Advisors and Collaborators!

Jin Fang
fangjin98@mail.ustc.edu.cn

www.fangjin.site

mailto:fangjin98@mail.ustc.edu.cn

