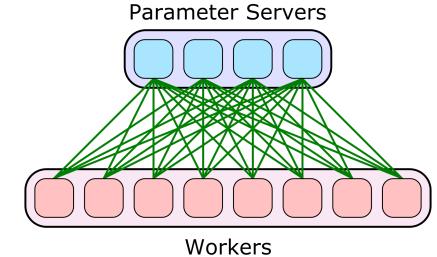
GOAT: Gradient Scheduling with Collaborative In-Network Aggregation for Distributed Training

Jin Fang

Gongming Zhao, Hongli Xu, Zhuolong Yu, Bingchen Shen, Liguang Xie

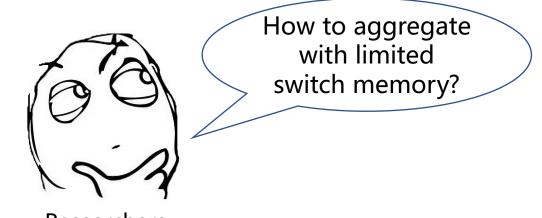
In-network Aggregation for DT

- With the increasing complexity of machine learning (ML) applications, the scale of ML tasks grows explosively
- > **Distributed training** is proposed to meet the needs of training large-scale ML tasks
- Communication overhead has become the main bottleneck
- In-network Aggregation: utilize programmable switches to aggregate gradients within the network



Problem: Switch Memory Limitation

- > Switch memory is used to buffer the intermedia aggregation value
- Current programmable switch has limited on-chip memory
 - ➤ Intel Tofino 1: 22MB
 - ➤ Intel Tofino 2: 64 MB
- Size of popular DNN models usually exceeds the size of switch memory
 - ➤ ResNet-50: 98MB
 - ≻ VGG-16: 528MB



Researchers

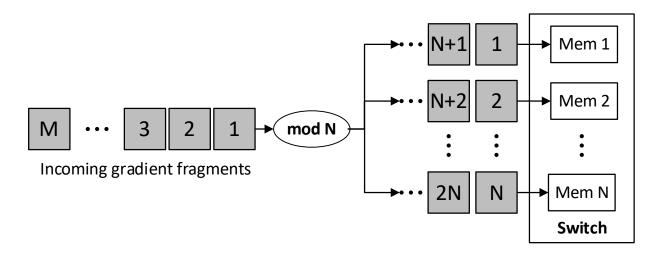
Existing Solution

Increase Memory Size

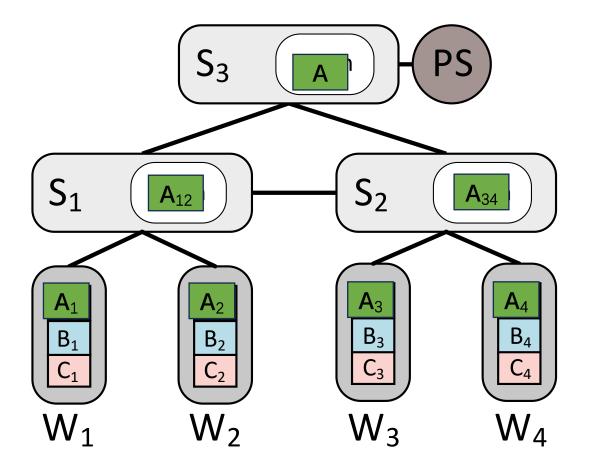
- Directly increasing the on-chip memory size High cost!
- > TEA (SIGCOMM 20): utilizing external server memory to extend Additional latency!

Memory Sharing Scheme

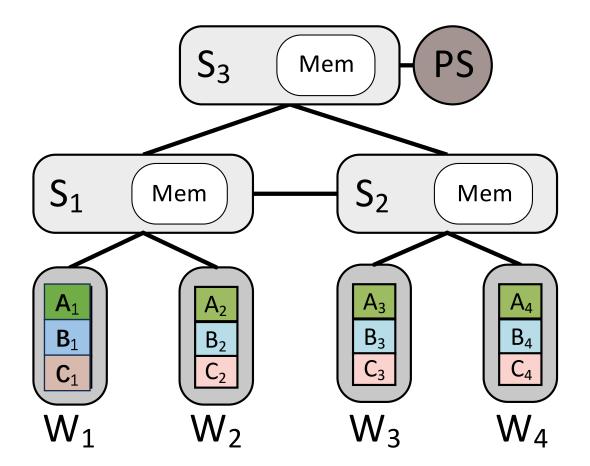
> ATP (NSDI 21): manage and **reuse** the switch on-chip memory



> Memory sharing scheme requires gradient fragments arriving at switches **simultaneously**



> Asynchronously arriving gradient fragments will increase the aggregation overhead of the PS



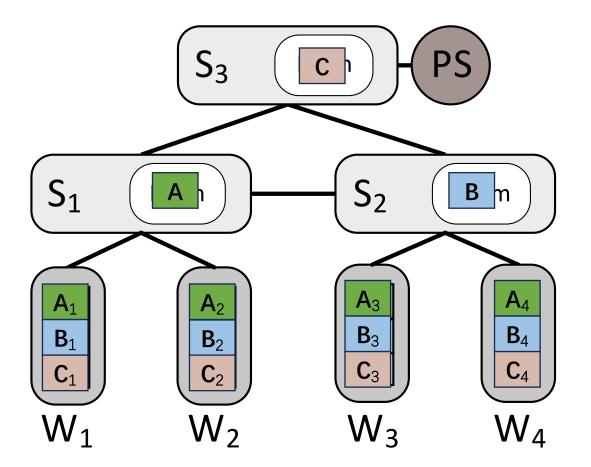
The aggregation overhead of the PS is 7

$$C_{2} B_{2} A_{2} C_{1} B_{1} A_{1} \rightarrow S_{1} \rightarrow C_{2} B_{2} A_{1,2} C_{1} B_{1}$$

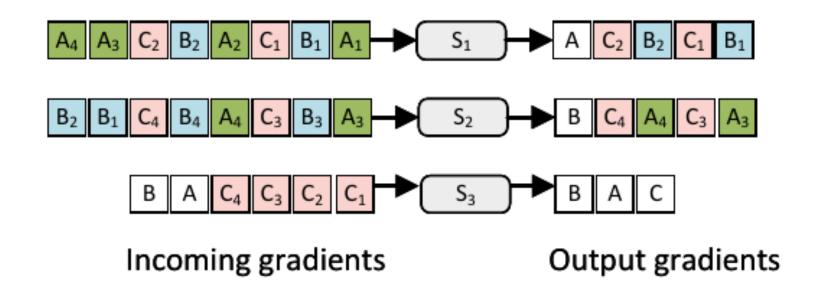
$$C_{4} B_{4} A_{4} C_{3} B_{3} A_{3} \rightarrow S_{2} \rightarrow C_{4} B_{4} A_{3,4} C_{3} B_{3}$$

$$C_{4} C_{2} B_{4} B_{2} A_{3,4} A_{1,2} C_{3} C_{1} B_{3} B_{1} \rightarrow S_{3} \rightarrow C_{4} C_{2} B A_{3,4} A_{1,2} C_{3} C_{1}$$
Incoming gradients Output gradients

> Each switch buffers sub-model gradient to **collaborative** perform in-network aggregation



- > The aggregation overhead of the PS is **3 (optimal)**
- Incur additional scheduling cost?



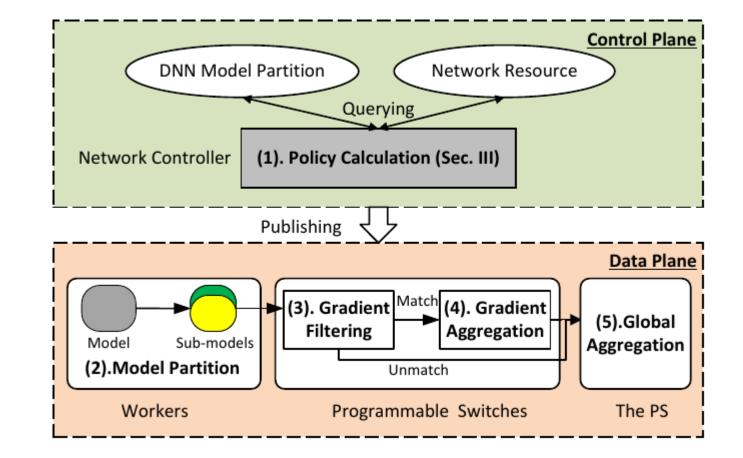
GOAT Overview

Control plane

- Where to buffer sub-model gradients?
- In which node to aggregate gradients?

Data plane

- Model partition
- Gradient filtering
- Gradient aggregation
- Global aggregation



Problem Formulation

Parameter Server Architecture

- Parameter server: α
- ≻ Worker set: $W = \{w_1, w_2, ..., w_{|W|}\}$

DNN Model Training

> Gradient set of sub-model: $G = \{g_1, g_2, \dots, g_{|G|}\}$

Programmable Network

> Programmable switch set: $S = \{s_1, s_2, ..., s_{|S|}\}$

Problem Formulation

- > Objective: minimize the communication overhead
 - > Non-aggregated gradients sent from workers to aggregation nodes
 - Aggregated gradients sent from switches to the PS

- Sub-model aggregation constraint
- Aggregation node constraint
- Assignment constraint
- Switch memory constraint

$$\min \sum_{g \in G} (\sum_{w \in W} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s \cdot D_w(s) + \sum_{s \in S} x_g^s \cdot D_s(\alpha)) \cdot b(g) \\ \begin{cases} \sum_{s \in S \cup \{\alpha\}} x_g^s \ge 1, & \forall g \in G \\ \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s = 1, & \forall w \in W, g \in G \\ y_{w,g}^s \le x_g^s, & \forall w \in W, g \in G, s \in S \cup \{\alpha\} \\ \sum_{g \in G} x_g^s \cdot b(g) \le B(s), & \forall s \in S \\ x_g^s \in \{0, 1\}, & \forall g \in G, s \in S \cup \{\alpha\} \\ y_{w,g}^s \in \{0, 1\}, & \forall w \in W, g \in G, s \in S \cup \{\alpha\} \end{cases}$$
(1)

Algorithm Design

Convert the problem into an equivalent maximization problem

> So we only need to consider the total distance from switches to the PS

$$\min \sum_{g \in G} (\sum_{w \in W} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s \cdot D_w(s) + \sum_{s \in S} x_g^s \cdot D_s(\alpha)) \cdot b(g)$$

$$\max \sum_{g \in G} \sum_{s \in S} (\sum_{w \in W} y_{w,g}^s - x_g^s) \cdot D_s(\alpha) \cdot b(g)$$

$$\max \sum_{g \in G} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s - x_g^s) \cdot D_s(\alpha) \cdot b(g)$$

$$\max \sum_{g \in G} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s - x_g^s) \cdot D_s(\alpha) \cdot b(g)$$

$$\max \sum_{g \in G} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s - x_g^s) \cdot D_s(\alpha) \cdot b(g)$$

$$\max \sum_{g \in G} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s - x_g^s) \cdot D_s(\alpha) \cdot b(g)$$

$$\sum_{g \in G} \sum_{s \in S \cup \{\alpha\}} y_{w,g}^s = 1, \quad \forall g \in G$$

$$\sum_{g \in G} y_{w,g}^s = 1, \quad \forall w \in W, g \in G$$

$$\sum_{g \in G} y_{w,g}^s = s, \quad \forall w \in W, g \in G$$

$$\sum_{g \in G} x_g^s \cdot b(g) \leq B(s), \quad \forall s \in S$$

$$x_g^s \in \{0,1\}, \quad \forall g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

$$y_{w,g}^s \in \{0,1\}, \quad \forall w \in W, g \in G, s \in S \cup \{\alpha\}$$

Algorithm Design

- Solve the converted problem with a knapsack-based randomized rounding algorithm
 - Relax the converted LP and obtain the optimal solution
 - Assign switches for sub-model gradients with knapsacks
 - Determine aggregation nodes for workers' sub-model gradients according to switch assignment

Algorithm 1 KRGS: Knapsack-based Randomized Rounding for Gradient Scheduling

- 1: Step 1: Solving the Relaxed Problem
- 2: Construct a LP by replacing with $x_g^s, y_{w,g}^s \in [0, 1]$.
- 3: Obtain the optimal solution $\{\widetilde{x}_{q}^{s}, \widetilde{y}_{w,q}^{s}\}$.
- 4: Step 2: Assigning Switches for Sub-Model Gradients
- 5: for each sub-model gradient $g \in G$ do

6: Let
$$k(g) = \left[\sum_{s \in S} \widetilde{x}_g^s\right]$$
.

- 7: Put x_g^s ($\forall s \in S$) into k(g) knapsacks with min-max sum.
- 8: for each knapsack a do
- 9: Let \mathbb{A} denote the variables in knapsack a.
- 10: Calculate $S_a = \sum_{\widetilde{x}_g^s \in \mathbb{A}} \widetilde{x}_g^s$.
- 11: Choose s for $\widetilde{x}_g^s \in \mathbb{A}$ with probability $\frac{\widetilde{x}_g^s}{\mathcal{S}_a}$.
- 2: Set $\hat{x}_g^s = 1$ for chosen aggregation node s.
- 13: Let $S(\vec{g}) = \{s \in S | \hat{x}_g^s = 1\}$ denote the set of switches responsible for aggregating sub-model gradient g.
- 14: Step 3: Determining Aggregation Nodes for Workers' Sub-Model Gradients
- 15: for each worker $w \in W$ do
- 16: for each gradient $g \in G$ do
- 17: Set the probabilities of selecting switch $s \in S(g)$ and the PS to $p_n(s) = \frac{\tilde{y}_{w,g}^s}{\tilde{x}_g^s}$ and $p_n(\alpha) = 1 - \sum_{s \in S(g)} p_n(s)$, respectively.
- 18: Select an aggregation node $s \in S \cup \{\alpha\}$ with the probability of $p_n(s)$.

Evaluation

Testbed

> How fast can GOAT accelerate the distributed training tasks?

> How much can GOAT **reduce** the aggregation overhead?

Simulation

> Can GOAT handle the **large-scale** distributed task?

Can GOAT handle the network dynamic?

Evaluation: Setup

Topology

- > 9 servers
- > 3 Wedge100BF-32x programmable switches
- ➢ All connected with 100Gbps links

Workload

> 2 DNN models: ResNet-18(44MB) and ResNet-50 (98MB)

Dataset: Cifar-100

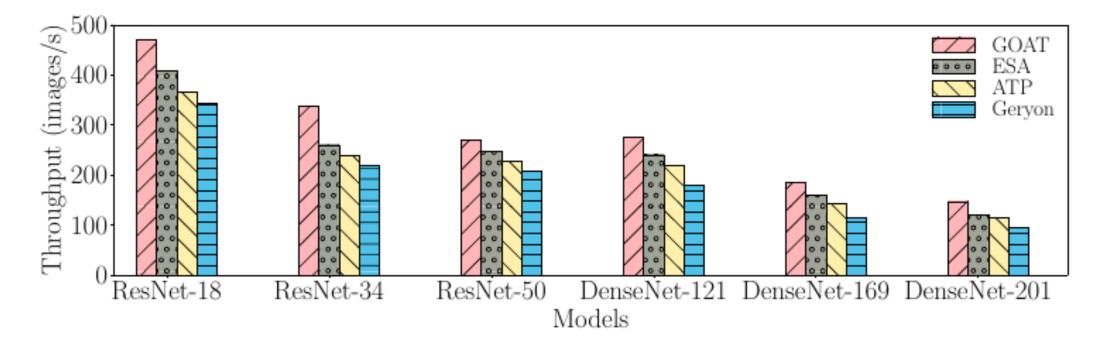
Evaluation: Setup

Benchmark

- Geryon (INFOCOM 20): design a communication scheduling scheme without in-network aggregation
- ATP (NSDI 21): perform in-network aggregation in the first encountered aggregation node with available memory capacity
- ESA: design a priority-based memory preemption mechanism for in-network aggregation

Evaluation: Throughput

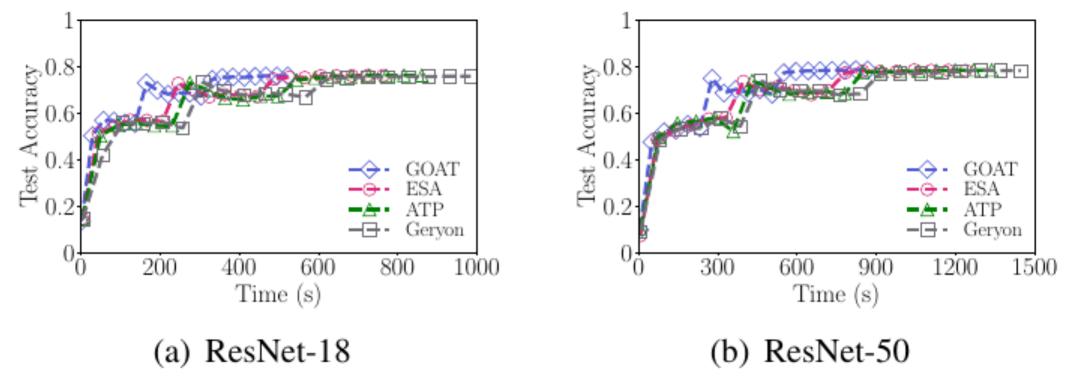
Each distributed training task contains 8 workers



GOAT increases up to 53.3% in training throughput

Evaluation: Accuracy

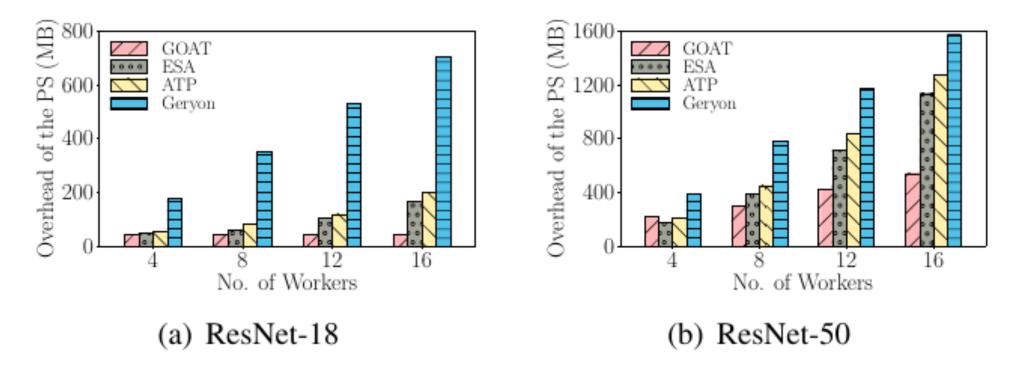
Record the test accuracy of training tasks in each epoch



GOAT speeds up distributed training by 1.77x

Evaluation: Overhead

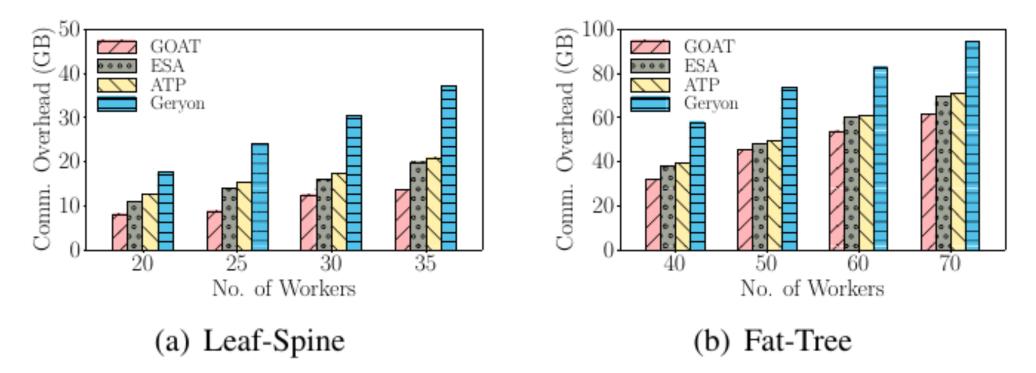
> Vary the number of workers from 4 to 16



GOAT reduces aggregation overhead of the PS by 93.8%

Evaluation: Scalability

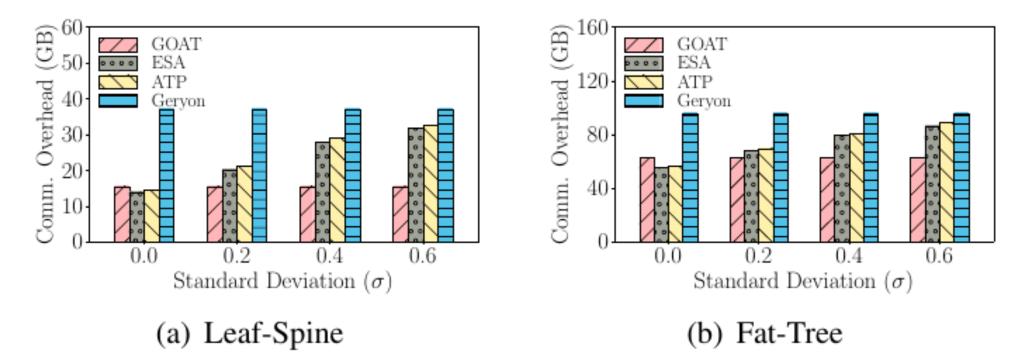
Evaluate GOAT with two practical topologies and more workers



GOAT reduces communication overhead by 63.1%

Evaluation: Network Dynamic

> Vary the sending rate of workers to simulate network dynamic



GOAT always achieves the least communication overhead

Goal

Minimize the communication overhead of distributed training tasks with collaborative innetwork aggregation.

Challenges

- Sub-model gradient buffering
- Aggregation node selection
- Switch memory limitation

Solution

> Knapsack-based randomized rounding algorithm with a constant approximation ratio

Thank you!

IEEE/ACM IWQoS 2023 Committee, Reviewers, Volunteers My Advisors and Collaborators!

Jin Fang fangjin98@mail.ustc.edu.cn www.fangjin.site