
IEEE/ACM TRANSACTION ON NETWORKING, VOL., NO., AUG 2022 1

GRID: Gradient Routing with In-network
Aggregation for Distributed Training

Jin Fang, Gongming Zhao, Member, IEEE, Hongli Xu, Member, IEEE, Changbo Wu, Zhuolong Yu

Abstract—As the scale of distributed training increases, it brings huge communication overhead in clusters. Some works try to reduce
the communication cost through gradient compression or communication scheduling. However, these methods either downgrade the
training accuracy or do not reduce the total transmission amount. One promising approach, called in-network aggregation, is proposed
to mitigate the bandwidth bottleneck in clusters by aggregating gradients in programmable hardware (e.g., Intel Tofino switches).
However, existing solutions mainly implement in-network aggregation through fixed (or default) routing paths, resulting in load
imbalancing and long communication time. To deal with this issue, we propose GRID, the first-of-its-kind work on Gradient Routing with
In-network Aggregation for Distributed Training. In the control plane, we present an efficient gradient routing algorithm based on
randomized rounding and formally analyze the approximation performance. In the data plane, we realize in-network aggregation by
carefully designing the logic of workers and programmable switches. We implement GRID and evaluate its performance on a
small-scale testbed consisting of 3 Intel Tofino switches and 9 commodity servers. With a combination of testbed experiments and
large-scale simulations, we show that GRID can reduce the communication time by 38.4%-60.1% and speed up distributed training by
17.4%-52.7% compared with state-of-the-art solutions.

Index Terms—In-network Aggregation, Gradient Routing, Distributed Training, Datacenter Network

✦

1 INTRODUCTION

As the cornerstone of large-scale machine learning (ML)
applications, distributed training (DT) is widely used in various
fields (e.g., computer vision [1], natural language processing [2]
and recommender system [3]). In distributed training, compute
nodes iteratively train large ML models for better performance
(e.g., higher classification accuracy). There are two kinds of
compute nodes: workers and the parameter server (PS). In each
iteration, workers perform gradient computation locally and send
gradients to the PS. On receiving gradients from all the workers,
the PS performs global aggregation and sends the results back
to workers. As the scale of models and datasets grows, gradient
aggregation requires massive communication resources, incurring
performance bottleneck in practice [4–7]. According to [7], for a
DT task training DeepLight on 100Gbps links, 79% of the training
time is occupied for communication.

To resolve this communication bottleneck, existing works
often focus on communication scheduling [8–12] or gradient
compression [13–16]. Communication scheduling increases the
overlap between computation and network transmission via fine-

• J. Fang, G. Zhao, H. Xu and C. Wu are with the School
of Computer Science and Technology, University of Science
and Technology of China, Hefei, Anhui, China, 230027, and
also with Suzhou Institute for Advanced Research, University
of Science and Technology of China, Suzhou, Jiangsu, China,
215123. E-mails: fangjin98@mail.ustc.edu.cn, gmzhao@ustc.edu.cn,
xuhongli@ustc.edu.cn, wuchangbo@mail.ustc.edu.cn.

• Z. Yu is with the Department of Computer Science, Johns Hopkins
University, 3400 North Charles Street, Baltimore, MD, USA, 21218.
E-mail: zhuolong@cs.jhu.edu.

grained gradient transmission (e.g., sub-models instead of the
whole model). In this way, workers can reduce idle waiting time in
each iteration and fully utilize network bandwidth. For example,
ByteScheduler [10] accelerates distributed training by maximizing
the overlap of gradient transmission and computation through
Bayesian optimization. Though communication scheduling im-
proves communication efficiency, it does not directly reduce the
total transmission amount and may still encounter the communica-
tion bottleneck, especially on the PS side. Gradient compression
can avoid the bandwidth bottleneck by reducing the volume of
exchanged data. For example, the authors [6] exploit the sparsity
of gradients to maximize effective bandwidth usage by sending
only non-zero data blocks. But gradient compression faces the
problem of degrading training accuracy.

Nowadays, programmable hardwares (e.g., smart NICs [17,
18] and programmable switches [19, 20]) provide the ability of
computation. As a result, in-network aggregation has been pro-
posed [5, 7, 21, 22] for mitigating the communication bottleneck
of distributed training in clusters. Specifically, we can offload
parts of gradient aggregation tasks into programmable hardware
to reduce the amount of forwarded traffic. After a programmable
device aggregates multiple gradients, only the aggregated gradient
is transmitted in the network. For example, SwitchML [7] uses a
P4-based programmable switch for aggregating the gradients of
workers inside a rack to minimize the communication cost of a
single rack. ATP [5] provides a protocol to support in-network
aggregation in multi-tenant clouds. However, the above works
mainly focus on efficiently realizing the aggregation operations
in programmable switches, neglecting the question of how to

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 2

choose efficient gradient routing (i.e., where to perform in-network
aggregation)? If we implement in-network aggregation with fixed
(or default) routing paths, the traffic load distribution may be
imbalanced, and the in-network aggregation capability cannot be
fully utilized, leading to long communication time (see Section
6). Thus, it is necessary to design proper gradient routing for
in-network aggregation.

However, performing gradient routing with in-network ag-
gregation is non-trivial. On the one hand, distributed training
tasks will face multi-dimensional resource constraints, such as
switch processing capacity and link bandwidth. Moreover, the in-
network aggregation will change the total amount of forwarded
gradients, making existing routing methods [23, 24] inefficient.
Therefore, designing an efficient gradient routing scheme with
in-network aggregation is challenging. On the other hand, with
limited in-memory size on programmable switches, it is expected
to aggregate the synchronous gradients. However, due to network
dynamics, gradient packets may arrive at programmable switches
asynchronously, which should store a large number of intermedi-
ate results and exhaust the memory of programmable switches,
decreasing the in-network aggregation throughput. Thus, it is
necessary to design a rate synchronization mechanism to ensure
that the gradients of multiple workers synchronously arrive at the
switch for aggregation, which is also difficult. To handle these
challenges, we design and implement GRID, which considers
gradient routing with in-network aggregation in the context of
clusters. The main contributions of this paper are as follows:

1) We propose GRID, a gradient routing framework for in-
network aggregation, consisting of the control plane and the
data plane, to mitigate the communication bottleneck and
speed up the distributed training tasks.

2) We give a thorough control plane design and propose a ran-
domized rounding based algorithm to maximize the gradient
sending rate of workers with resource constraints. Moreover,
we design and implement the data plane for workers and
programmable switches, trying to synchronize the sending
rate of workers.

3) We conduct a small-scale testbed based on Intel Tofino
switches and large-scale simulation based on real-world net-
work topologies [25, 26]. The experimental and simulation
results show that, given the same number of training itera-
tions, GRID can reduce the communication time by 38.4%-
60.1% and speed up distributed training by 17.4%-52.7%
compared with the state-of-the-art solutions.

The rest of this paper is organized as follows. In Section 2,
we summarize the state-of-art solutions to mitigate the commu-
nication bottleneck of distributed training. Section 3 presents a
motivating example and overview of GRID. In Section 4, we
illustrate the control plane design of GRID. The experimental and
simulation results are presented in Section 6. We conclude this
paper in Section 7.

2 RELATED WORK

This section first introduces the situation of distributed training.
Then, we illustrate how to speed up distributed training by com-

munication scheduling. At last, we present how to mitigate the
communication bottleneck through in-network aggregation.

2.1 Distributed Training
A deep neural network (DNN) model consists of multiple network
layers, each of which contains a large number of parameters.
Training a DNN model requires hundreds of iterations over the
dataset to achieve convergence [27]. In terms of the parallelism
schemes, the distributed model training can be categorized into
two main types: model parallelism and data parallelism [28]. This
paper focuses on the data parallelism distributed model training,
which splits the whole dataset into multiple compute nodes. In
each iteration, each compute node independently trains the model
on its partition of the dataset to generate the gradient. There
are lots of algorithms for gradient calculation such as stochastic
gradient descent (SGD) and its variants [29–33]. We take SGD as
an example. Each compute node calculates gradient g = ▽f(wt),
where ▽ denotes vector differential operator and f(wt) denotes
the value of loss function related to model wt in epoch t. Subse-
quently, compute nodes communicate with other nodes to update
the global model parameters (i.e., gradient aggregation) [34–39].
This phase can be done asynchronously or synchronously. The
former case mitigates the time of communicating at the cost of
non-converging. The latter case can be acted as a synchronization
barrier for convergence guarantees. For example, in synchronous
SGD (SSGD) [35], the PS receives the gradients of workers and
performs aggregation by calculating 1

N

∑N
n=1 g

n
t , where N is the

number of workers and gnt is the gradient of worker n in epoch t.
In this paper, we consider the synchronization updates.

Parameter Server (PS) [40] and AllReduce [41] are two
widely-adopted gradient aggregation schemes. In PS, there are two
kinds of compute nodes: workers and parameter servers. Workers
generate and push gradients to parameter servers. Afterward,
parameter servers aggregate all the gradients and update the model
parameters. At last, workers pull the updated results from parame-
ter servers for the next training iteration. AllReduce uses collective
communication operations to perform gradient aggregation. We
take Ring-AllReduce [42], which is common in practice, as an
example. In Ring-AllReduce, all compute nodes are workers and
form a ring topology [43]. Each worker sends a partition of the
gradient to its successor and receives another partition of the
gradient from its predecessor. Recent studies have shown that the
bottleneck in distributed model training is shifting from computing
to communication [44]. To deal with this issue, communication
scheduling and in-network aggregation are proposed to utilize
the network bandwidth efficiently and reduce the traffic amount,
respectively.

2.2 Communication Scheduling
Some works try to pipeline computing and communication phase
of training, ranging from designing the high-performance traffic
scheduler [8–10, 12] to optimizing collective communication
operations [11, 45, 46], for accelerating the distributed training.
For instance, the authors in [11] present BlueConnect, an efficient
communication library optimized for GPU-based platforms, which

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 3

S1 S2

S3

PS

 3/3

L2 1/3

3/3

1.5 1.59/9

1 1 1 1 1 1

W1 W2 W3 W4 W5 W6

W7 W8

L1 L3

(a) Geryon

3/33/3

S1 S2

S3

PS

L2 0/3

L3L1

3 39/9

2.43 2.43 2.43 2.43 3 3

9/9 6/9

6.75/9

W1 W2 W3 W4 W5 W6

W7 W8

(b) ATP

3/33/3

S1 S2

S3

PS

L2 3/3

L3L1

3 39/9

3 3 3 3 3 3

9/9 9/9

6/9

W1 W2 W3 W4 W5 W6

W7 W8

(c) GRID

Fig. 1: A distributed training task containing 1 PS, 8 workers (i.e., W1-W8), and 3 programmable switches (i.e., S1-S3). The solid arrows
represent the aggregated gradients, and the dotted arrows represent the non-aggregated ones. For simplicity, we omit the intra-rack transmission
arrows. Let load/capacity represent the ratio of usage and capacity of links and programmable switches. The left plot shows the network
workload of Geryon, which has a minimum gradient sending rate of 1 Gbps. The middle plot shows the network workload of ATP, which has
a minimum gradient sending rate of 2.43 Gbps. The right plot shows the network workload of GRID, which has a minimum gradient sending
rate of 3 Gbps.

decomposes a single all-reduce operation into numerous paralleliz-
able operations to exploit the trade-off between communication
time and bandwidth usage. Work [12] presents a traffic scheduler
named Geryon, which determines the scheduling scheme for flows
according to their priorities to maximize the utilization of band-
width resources. However, these methods accelerate distributed
training by overlapping the timing of computation and commu-
nication, while not directly reducing the amount of transmitted
traffic. Therefore, these methods don’t directly solve the problem
of bandwidth exhaustion.

2.3 In-network Aggregation
The idea of in-network aggregation begins at wireless networks
[47, 48] and now attracts researchers to adopt in-network aggre-
gation in clusters. Specifically, in-network aggregation offloads
part of gradients aggregated in forwarding devices to reduce
the amount of transferred data, alleviating the communication
bottleneck.

Since in-network aggregation utilizes forwarding devices to
aggregate gradients, it has the potential to co-exist with other
methods performed in end hosts, e.g., communication scheduling
or gradient quantization [49], to further mitigate the communica-
tion bottleneck and accelerate distributed training.

There have been a lot of works implementing in-network
aggregation in clusters with servers [44, 50, 51] or programmable
switches [5, 7, 21, 22]. For example, NetAgg [50] uses ded-
icated servers connected with switches to perform in-network
aggregation. However, server-based in-network aggregation incurs
additional bandwidth costs and has limited scalability. With the
rapid development of programmable switches (e.g., P4-based
[52, 53], FPGA-based [54]), performing in-network aggregation
with programmable switches is becoming popular. For instance,
SHARP [21] implements in-network aggregation based on a

dedicated Mellanox’s SiwtchIB-2 ASIC. iSwitch [22] tackles
reinforcement learning and moves the gradient aggregation to
FPGA-based programmable switches. PANAMA [55] designs an
in-network hardware accelerator based on FPGA and presents a
load-balancing protocol for in-network aggregation. As another
option, P4-based programmable switches [56] attract a lot of
attention. SwitchML [7] performs the in-network aggregation in
a rack-scale network and offloads gradient aggregation of all
workers to the top-of-rack (ToR) switches. ATP [5] considers a
two-layer topology, and the gradients can be aggregated either on
near-worker ToR switches or near-PS ToR switches. The authors in
[57] consider the problem of how to place programmable switches
in the network to minimize network overload.

However, these works mainly focus on efficiently realizing the
aggregation operations in programmable switches, ignoring the
impact of gradient routing selection. In fact, due to the constraint
of switch processing capacity, the gradient routing selection is
critical to the efficiency of in-network aggregation. Therefore, this
paper design GRID to study the problem of gradient routing with
in-network aggregation.

3 MOTIVATION AND OVERVIEW

This section first gives an example to illustrate the pros and cons
of state-of-the-art solutions, which motivate our study. Then we
present the overview and workflow of GRID.

3.1 A Motivating Example
Consider a distributed training task containing 1 PS and 8 workers.
Each link has a bandwidth of 3 Gbps. Note that, in practice,
the ingress bandwidth of the PS is often larger than that of
workers to avoid the communication bottleneck, so we set the
ingress bandwidth of the PS to 9 Gbps. The processing capacity
of programmable switches is 9 Gbps.

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 4

Since the PS needs to wait for gradients of all workers
to perform global aggregation, we take the minimum gradient
sending rate as the critical metric, and the results are shown in
Fig. 1. The circle represents the PS. The gray squares and blue
rectangles represent workers W1-W8 and programmable switches
S1-S3, respectively. We use load/capacity to denote the workload
ratio and capacity for programmable switches and links. The solid
arrows represent the aggregated gradients, and the dotted arrows
represent the non-aggregated gradients sent by workers.

We first consider the Geryon scheme [12], which is a classi-
cal flow scheduling scheme in distributed training in Fig. 1(a).
It schedules the gradients through different paths according to
resource constraints to avoid network congestion. In this case,
Geryon schedules the gradient of W4 through the path W4->S1-
>S2->S3->PS to avoid congestion in link L1. Accordingly, the
gradients of workers W1-W3 are scheduled through the paths
W1->S1->S3->PS, W2->S1->S3->PS and W3->S1->S3->PS,
respectively. Due to bandwidth constraints of links L1 and L3,
workers W1-W6 will send the gradients with the minimum gradi-
ent sending rate of 1 Gbps.

We then consider a state-of-the-art method with in-network
aggregation, named ATP [5]. In ATP, each worker chooses the
nearest programmable switches for in-network aggregation (i.e.,
S1 aggregates W1, W2, W3 and W4. S2 aggregates W5 and W6.
S3 aggregates W7 and W8). If the processing capacity of the
programmable switch is exhausted, it will directly transfer the
gradients to the PS. In this case, since the processing capacity
of S1 is 9 Gbps, W1-W4 can send gradients with the speed of
9/4=2.25 Gbps. Moreover, W1-W4 can send gradients with the
additional speed of 0.75/4=0.18 Gbps to the PS, since link L1

still has 3-2.25=0.75 Gbps available bandwidth. These gradients
will be aggregated by S3 with available processing capacity. As a
result, the minimum gradient sending rate is 2.43 Gbps.

3.2 Our Intuition
From the above example, we observe that both solutions of
accelerating distributed learning have advantages and disadvan-
tages. Geryon routes the packets without in-network aggregation,
therefore, the gradient sending rates of workers are limited by the
ingress bandwidth of the PS. ATP adopts in-network aggregation,
while routing the packets through the default paths to the PS.
As a result, the gradient sending rates of workers W1-W4 are
limited by programmable switch S1. A question immediately
following the above discussion is that how to achieve efficient in-
network aggregation through reasonable gradient routing under
the resource constraints of both programmable switches and PS?

In Fig. 1(b), we notice that, although S1 can not aggregate
gradients of W1-W4 with the speed of 3 Gbps, S2 has available
processing capacity for aggregating. Therefore, as shown in Fig.
1(c), we select S2 to aggregate the gradients of W4 and route
these gradients through the path W4->S1->S2. This way, all the
workers can achieve the gradient sending rate of 3 Gbps. This
scheme improves the minimum gradient sending rates by 200%
and 23.5%, compared with Geryon and ATP, respectively. The
reason for performance improvement is that, with heterogenous
switch workloads, the fixed routing scheme of ATP will suffer

①.Policy Calculation

Publishing

Control Plane

Data Plane

Network
Resource

②. Gradient
Chunking

Workers The PS

Network Controller

⑤. Global
Aggregation

③.Gradient
Aggregation

④.Rate
Synchronization

③.Gradient
Aggregation

④.Rate
Synchronization

Programmable
Switches

Querying

Fig. 2: System overview of GRID. GRID is composed of two parts.
The control plane is responsible for determining the gradient routing
policy. The data plane consists of workers, programmable switches
and the PS, which is responsible for performing gradient routing with
in-network aggregation.

the problem of load imbalancing. However, our proposed scheme
route workers’ gradients to appropriate programmable switches
according to their processing capacities. Motivated by this exam-
ple, we design a gradient routing with an in-network aggregation
framework called GRID. Note that, this example shows the per-
formance gains for simplified distributed model training, further
experimental results show that GRID can improve the gradient
sending rate by 111.3% and 40.8%, compared with Geryon and
ATP, respectively.

3.3 GRID Overview

As shown in Fig. 2, GRID consists of the control and data
planes. The control plane leverages the collected network resource
information to compute the gradient routing policy, i.e., to which
programmable switches (or the PS) each worker should send
its gradient and the corresponding gradient sending rates. The
data plane consists of workers, programmable switches and the
PS. Specifically, workers are responsible for gradient chunking.
Programmable switches perform gradient aggregation and rate
synchronization to realize the gradient routing with in-network
aggregation. At last, the PS performs global aggregation.

The core of GRID is to determine the gradient routing policy,
which will be introduced in Section 4. For the data plane, we
can implement gradient routing and aggregation based on existing
solutions [5]. Therefore, we present the workflow in Section 3.4
and illustrate the detailed design of gradient aggregation and rate
synchronization in Section 5.

3.4 Workflow of GRID

Fig. 2 briefly illustrates the GRID workflow, which mainly consists
of 5 steps.

1) Policy calculation: The network controller calculates the
gradient routing policy and publishes the policy to workers
and programmable switches. Note that, the gradient routing

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 5

TABLE 1: Table of Notations
Notations Semantics

α the PS
N the set of workers
S the set of programmable switches

Bα the ingress bandwidth of the PS α
Cs the processing capacity of programmable switch s
T the maximum sending rate

xα
n

whether the gradient of the worker n is aggregated
by the PS or not

xs
n

whether the gradient of the worker n is aggregated
by programmable switch s or not

rαn the sending rates of worker n to the PS

rsn
the sending rates of worker n
to programmable switch s

ys
the sending rate of programmable switch s
to the PS

λ the minimal sending rates among workers

policy is published only once, and the data plane will itera-
tively execute the following 4 steps in the DT task.

2) Gradient chunking: Since the switch memory size is usually
smaller than the gradient size, existing works [5, 7] perform
aggregation in switch with the granularity of gradient frag-
ment. Specifically, each worker splits its gradient into a set
of gradient fragments, each of which can be identified by the
tuple of <node id, fragment id>. The node id indicates which
programmable switch or the PS will aggregate the gradient
fragment. The fragment id is the index of the fragment. Each
switch organizes its memory as an array of memory units,
each of which can aggregate one fragment at a time.

3) Gradient aggregation: Each programmable switch maintains
an identity id. On receiving a gradient fragment, the pro-
grammable switch compares the fragment’s node id with its
id. If they match, the programmable switch will perform
gradient aggregation. Otherwise, the programmable switch
will directly forward the fragment according to the flow table
and perform rate synchronization.

4) Rate synchronization: Once a hash collision happens, the
programmable switch will send a control packet to inform the
corresponding worker adjusting the size of sending window.

5) Global aggregation: The PS collects all gradient fragments
(aggregated by programmable switches and directly sent from
workers) and performs aggregation.

4 GRID CONTROL PLANE DESIGN

Determining gradient routing policy is the key step in the control
plane of GRID. To achieve efficient in-network aggregation, we
first formulate the problem of Gradient Routing with In-network
Aggregation (GRIA). Then we propose a randomized rounding
based approximation algorithm named R-GRIA. At last, we ana-
lyze the approximation performance of R-GRIA.

4.1 Network Model

Parameter server architecture. A parameter server architecture
consists of the parameter server (PS) α and a set of workers N ={
n1, n2, . . . , n|N |

}
. Workers compute the gradients locally and

send these gradients to the PS with the rate of rαn . The ingress
bandwidth of the PS α is denoted by Bα. Note that, our algorithm
can be easily extended to architectures with multiple PSs, since
the partitions of each PS are independent.
Programmable network. We consider a cluster (e.g., datacenter)
containing four elements: a compute node set, a programmable
switch set, a link set and a network controller.

1) The workers and the PS are hosted on the compute nodes for
gradients calculation and global aggregation.

2) The programmable switches are responsible for forwarding
and gradient aggregation. Let S =

{
s1, s2, . . . , s|S|

}
denote

the programmable switch set. Each programmable switch s
has a limited processing capacity Cs.

3) The compute nodes and the programmable switches are
connected via a set of links. Since the network topology is
stable in datacenters and elements are connected with high
bandwidth links, we assume the link bandwidth is sufficient.

4) The network controller can manage the whole network, e.g.,
routing the gradients of the workers.

4.2 Problem Formulation

This section gives the problem formulation of the Gradient Rout-
ing with In-network Aggregation (GRIA) problem in clusters.
Supposing that the workers forward the gradients to the PS,
some of the gradients are forwarded and aggregated in-network
by programmable switches. This routing scheme can be split into
two phases: 1) workers’ gradients are forwarded to programmable
and 2) programmable switches perform aggregation and forward
the aggregated gradients to the PS. In the following, we use
aggregation nodes to represent programmable switches and the
PS, since they all have gradient aggregation capabilities. For each
worker n ∈ N , we should determine the aggregation node. We
use xs

n ∈ {0, 1} to represent the gradient of the worker n is
aggregated by the programmable switch s or not, and xα

n ∈ {0, 1}
to denote whether the gradient is aggregated by the PS, or not.
We use rαn and rsn to denote the sending rates of worker n to
the PS α and the programmable switch s, respectively. Once a
programmable switch s performs aggregation, the result should
be sent to the PS α. Let ys represent the sending rate of the
programmable switch s to the PS, if it performs the in-network
aggregation. We illustrate the following constraints of the GRIA
problem:

1) Aggregation Constraint: Considering the number of pro-
grammable switches in the cluster is limited, routing gra-
dients through multiple programmable switches will cause
longer routing paths and higher bandwidth consumption.
Similar to [5], we assume that each gradient will be ag-
gregated in-network once at most to balance the complex-
ity and the performance of the GRIA problem, we have∑

s∈S∪{α} x
s
n = 1,∀n ∈ N .

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 6

2) Sending Rate Constraint: For each worker n ∈ N , its sending
rate to the aggregation node s can’t exceed the maximum
sending rate T (i.e., the ingress bandwidth of the PS), that is
rsn ≤ xs

n · T, ∀n ∈ N, s ∈ S ∪ {α}.
3) Aggregation Node Constraint: For each worker n ∈ N ,

its sending rate can’t exceed that of corresponding pro-
grammable switches, if some workers choose it as the ag-
gregation node, which means rsn ≤ ys,∀n ∈ N, s ∈ S.

4) Processing Capacity Constraint: Each programmable switch
can aggregate gradient with a limited processing rate, which
is
∑

n∈N rsn ≤ Cs,∀s ∈ S.
5) Bandwidth Constraint: The forwarding rate can’t exceed the

ingress bandwidth of the PS α. There are two kinds of
flows. For each worker n ∈ N , if its aggregation node is
the PS, its flow consumes the ingress bandwidth of the PS
by rαn . Otherwise, worker n’s gradient is aggregated by the
programmable switch s, and only one aggregated flow will
be sent to the PS. Therefore, it only consumes the ingress
bandwidth of the PS by ys. The bandwidth constraint can be
represented as

∑
n∈N rαn +

∑
s∈S ys ≤ Bα.

With these constraints, the problem can be formulated as
follows:

max λ

S.t.



∑
s∈S∪{α} x

s
n = 1, ∀n ∈ N

rsn ≤ xs
n · T, ∀n ∈ N, s ∈ S ∪ {α}

rsn ≤ ys, ∀n ∈ N, s ∈ S

λ ≤
∑

s∈S∪{α} r
s
n, ∀n ∈ N∑

n∈N rsn ≤ Cs, ∀s ∈ S∑
n∈N rαn +

∑
s∈S ys ≤ Bα

xs
n ∈ {0, 1}, ∀n ∈ N, s ∈ S ∪ {α}

rsn ≥ 0, ∀n ∈ N, s ∈ S ∪ {α}
ys ≥ 0, ∀s ∈ S

(1)
The first set of equations denotes the aggregation constraint.

The second set of inequalities represents the sending rate con-
straint. The third set of inequalities means the aggregation node
constraint. We define λ as the minimum sending rate among the
workers and the fourth set of inequalities calculates the λ. The
fifth set of inequalities denotes the processing capacity constraint.
The sixth inequality represents the bandwidth constraint. Our goal
is to maximize the minimum sending rate of workers.

4.3 Algorithm Design
In this section, we propose a randomized rounding based algo-
rithm for the GRIA problem, called R-GRIA. Specifically, R-
GRIA routes the gradients via two major steps: 1) Relaxing
the constraints of GRIA for computing the optimal solutions;
2) Determining the in-network aggregation scheme, including
calculating the aggregation nodes and gradient sending rates of
each worker.

In the first step, we relax Eq. (1) by replacing xs
n ∈ {0, 1}

with xs
n ∈ [0, 1]. Then, we can solve it with a linear program

solver (e.g., PULP [58]) and the optimal solutions are denoted as

Algorithm 1 R-GRIA: Randomized Rounding Algorithm for
GRIA

1: Step 1: Solving the Relaxed Problem
2: Construct a linear programming LP by replacing with xs

n ∈
[0, 1].

3: Derive the optimal solutions {x̃s
n, r̃

s
n, ỹs}.

4: Step 2: Determining the In-network Aggregation Scheme
5: for each worker n ∈ N do
6: Choose the programmable switch or PS s ∈ S∪{α} as the

aggregation node with the probability r̃sn∑
s∈S∪{α} r̃sn

and set
x̂s
n = 1.

7: Let sn denote the aggregation node of worker n.
8: Set the gradient sending rate to rsnn =

∑
s∈S∪{α} r̃

s
n.

9: Define S′ = {s|s ∈ S,
∑

n∈N
x̂s
n > 0}.

10: for each programmable switch s ∈ S′ do
11: Set the gradient sending rate to ŷs = max{rsnn , n ∈ N}
12: Set λ = min{rsnn , n ∈ N}.

{x̃s
n, r̃

s
n, ỹs}. In the second step, we select the aggregation node

based on the optimal solutions. Specifically, for each worker n,
the algorithm chooses the aggregation node s ∈ S ∪ {α} with
the probability r̃sn∑

s∈S∪{α} r̃sn
. The aggregation node of worker n is

denoted as sn. After all the workers have selected the aggregation
nodes, we define S′ = {s|s ∈ S,

∑
n∈N

x̂s
n > 0} to denote the

programmable switches, which perform in-network aggregation.
We set the gradient sending rate of worker n ∈ N to rsnn =∑

n∈S∪{α} r̃
s
n and that of programmable switch s ∈ S′ toŷs =

max{rsnn , n ∈ N}, respectively. As a result, the value of λ is set
to λ = min{rsnn , n ∈ N}. The algorithm is summarized in Alg.
1.

4.4 Performance Analysis
Theorem 1. R-GRIA can guarantee that each worker selects one

aggregation node. (i.e., R-GRIA guarantees the Aggregation
Constraint.)

Proof: In line 6 of the Alg. 1, R-GRIA only chooses one
place with the probability r̃sn∑

n∈S∪{α} r̃sn
as the aggregation node.

Thus, the gradients are aggregated on one aggregation node.

Theorem 2. R-GRIA guarantees that for each worker, its sending
rate won’t exceed the maximum sending rate T .

Proof: According to Eq. (1), we can know that r̃sn ≤ x̃s
n ·

T, ∀n ∈ N, s ∈ S ∪ {α} and
∑

s∈S∪{α} x̃
s
n ≤ 1,∀n ∈ N .

Combining these two inequalities, we have:
rsnn =

∑
n∈S∪{α}

r̃sn ≤
∑

n∈S∪{α}

x̃s
n · T ≤ T (2)

As a result, we guarantee the Sending Rate Constraint .

Theorem 3. R-GRIA guarantees that for each worker, its sending
rate won’t exceed that of its aggregation node.

Proof: In line 11 of Alg. 1, R-GRIA sets ŷs =
max{rsnn , n ∈ N} to ensure the gradient sending rate of pro-
grammable switches won’t lower than that of workers.

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 7

Lemma 4. Chernoff Bound: Given n independent variables:
y1, y2, . . . , yn,∀yi ∈ [0, 1]. Let τ = E [

∑n
i=1 yi]. Then,

Pr [
∑n

i=1 yi ≥ (1 + ϱ)τ] ≤ e
−ϱ2τ
2+ϱ , where ϱ is an arbitrary

positive value.

Theorem 5. R-GRIA will not exceed the Processing Capacity
Constraint by an approximation factor of O(log |S|). Under
the proper assumption, the bound can all be tightened to 2.

Proof: We first prove that for each worker n ∈ N and
aggregation node s ∈ S ∪ {α}, we have E [r̂sn] = r̃sn. Since we
choose the aggregation node sn for worker n with the probability
of r̃sn∑

n∈S∪{α} r̃sn
, and set the gradient sending rate of worker n as

r̂sn =
∑

n∈S∪{α} r̃
s
n. The expected value of r̂sn is:

E [r̂sn] =
r̃sn∑

n∈S∪{α} r̃
s
n

·
∑

n∈S∪{α}

r̃sn = r̃sn (3)

Then we define δs =
∑

n∈N
r̂sn as the processing throughput

of the programmable switch s. Since each worker n selects the
programmable switch s as the aggregation node independently,
we have E [δs] =

∑
n∈N r̃sn. By the definition of δs, we can get

the expected computing workload of each programmable switch
s ∈ S:

E [δs] =
∑
n∈N

r̃sn ≤ Cs (4)

Let Cmin denote the minimum processing capacity among the
programmable switches. We then define a constant value ν =
Cmin

N ·T to normalize the expected computing workload. Combining
Eq. (4) and the definition of ν, we have:{

δs·ν
Cs

∈ [0, 1]

E
[
δs·ν
Cs

]
≤ ν

(5)

By applying Lemma 4, we have:

Pr

[
δs · ν
Cs

≥ (1 + ϱ) · ν
]
≤ e

−ϱ2ν
2+ϱ

⇒ Pr

[
δs
Cs

≥ (1 + ϱ)

]
≤ e

−ϱ2ν
2+ϱ (6)

where ϱ is an arbitrary positive value.
We want to find ϱ for which the probability upper bound above

becomes very small. Specifically, we assume that:

Pr

[
δs
Cs

≥ (1 + ϱ)

]
≤ e

−ϱ2ν
2+ϱ ≤ 1

|S|
(7)

which means that the upper bound approaches quickly to zero as
the network grows. By solving Eq. (7), we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν
, (|S| ≥ 2)

⇒ ϱ ≥ log |S|
ν

+ 2, (|S| ≥ 2) (8)

In practice, the processing capacity of a programmable switch
can achieve up to 3.2Tbps [52], a PS architecture contains 8-36
workers in general [59], and we set |N | = 36 here. In the current
datacenter, the ingress bandwidth of the PS can achieve up to 100
Gbps [60]. Under this setting, ν = 320000

35·100 ≈ 91.43. We assume
the number of programmable switches in a datacenter is |S| = 50,

so 3·log |S| ≈ 5.09. Combining these assumptions, we can obtain
that ν ≥ 3 · log |S|. As a result, we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν

⇒ ϱ ≥ log |S|+
√
(2ν − log |S|)2 + 12ν log |S| − 4ν2

2ν

⇒ ϱ ≥ log |S|+
√
(2ν − log |S|)2
2ν

⇒ ϱ ≥ 1 (9)

Thus, the approximate factor of the Processing Capacity
Constraint is (ϱ+1) = log|S|

ν +3 = O(log |S|). Under the proper
assumption (i.e., ν ≥ 3 · log |S|), the bound can be tightened to
ϱ+ 1 = 2.

Theorem 6. R-GRIA will not exceed the Bandwidth Constraint
by an approximate factor of O(log |N · S|). Under the proper
assumption, the bound can be tightened to 4.

Proof: According to the bandwidth constraint, for the
ingress link of the PS α, there are two kinds of flows going
through: the flows from the workers and the flows from the
programmable switches. We define Bα,1 =

∑
n∈N

r̂αn as the

bandwidth usage of the first set of flows and Bα,2 =
∑
s∈S

ŷs

as the bandwidth usage of the second set of flows, respectively.
The bandwidth usage of the PS ingress link can be represented as
Bα,1 +Bα,2 ≤ Bα.

We first consider the bandwidth usage of the first flow set,
which can be calculated as

∑
n∈N

r̂αn = Bα,1. Let variable σα
n = r̂αn

represent the gradient sending rate of worker n. Since the worker
n can send gradient to the PS, if and only if it selects the PS as
the aggregation node, we have:

E [σα
n] =

∑
s∈S∪{α}

r̃sn · r̃αn∑
s∈S∪{α}

r̃sn
= r̃αn (10)

Thus, the expected bandwidth consumption of the first flow set
is:

E

[∑
n∈N

σα
n

]
=

∑
n∈N

E [σα
n]

=
∑
n∈N

r̃αn (11)

Using similar methods as in Theorem 5, we can prove that the
bandwidth usage of the first set of flows won’t be violated by an
approximation factor of O(log |N |), which means∑

n∈N

r̂αn ≤ O(log |N |) ·Bα,1 (12)

We next consider the bandwidth usage of the second flow set,
which can be calculated as

∑
s∈S ŷs = Bα,2. By observing the

optimal results of LP in Alg. 1, we can assume that all the workers
with the same aggregation node sn have the same sending rates.
As a result, we have ỹsn = r̃snn ,∀n ∈ N . We use n′ to denote the
worker with the largest sending rate to the programmable switch
s. The expected bandwidth consume by the programmable switch
s is

E [ŷs] = E [r̂sn′] = r̃sn′ = ỹs (13)

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 8

According to Eq. (13), we can calculate the expected band-
width consume of the second set of flows as:

E

[∑
s∈S

ŷs

]
=

∑
s∈S

E [ŷs]

=
∑
n∈N

ỹs (14)

Therefore, we can prove that the bandwidth usage of the
second set of flows won’t be violated by an approximation of
O(log |S|): ∑

s∈S

ŷs ≤ O(log |S|) ·Bα,2 (15)

Combining the Eq. (12) and the Eq. (15), the total bandwidth
violation factor won’t exceed:

O(log |N |) ·Bα,1 +O(log |S|) ·Bα,2

Bα

≤ O(log |N |+ log |S|) = O(log |N · S|) (16)
Besides, similar to Theorem 5, we can prove that under the

assumption of Bα,1 ≥ 3 · log |N | and Bα,2 ≥ 3 · log |S|,
the approximation factor of the Bandwidth Constraint can be
tightened to 4.
Theorem 7. After rounding, the minimum sending rate of workers

will equal the value in the relaxed LP . (i.e., we guarantee that
λ is the optimal result.)

Proof: In line 12 of the Alg. 1, we set λ = min{rsnn , n ∈
N}, where rsnn =

∑
s∈S∪{α} r̃

s
n. We define λ̃ as the optimal

result in the LP . By observing the LP in Alg. 1, we have

λ̃ = min

 ∑
s∈S∪{α}

r̃sn, n ∈ N


= min{rsnn , n ∈ N} = λ (17)

Eq. (17) means that the R-GRIA algorithm can guarantee that
the value of λ will equal that in the fractional solution after
randomized rounding.

5 GRID DATA PLANE DESIGN

Although the GRID controller determines the gradient routing
policy, there are still two issues when implementing in-network
aggregation for each programmable switch. The first issue is how
programmable switches determine which gradients are responsible
for aggregating when receiving gradients from different workers.
The second issue is that when gradient fragments arrive at switches
asynchronously, how does the programmable switch synchronize
worker sending rates so that in-network aggregation throughput
remains high? To address both issues, this section describes the
detailed design of gradient aggregation and rate synchronization.

5.1 Gradient Aggregation
When a programmable switch needs to aggregate a gradient frag-
ment, it hashes the fragment into a memory unit according to the
fragment id. Specifically, supposing that the number of memory
units is M , the switch will compute Hash(<fragment id>)%M to
allocate the gradient fragment. The switch records the fragment
id and the aggregation count. If the corresponding memory unit

is empty, it will store the value of the gradient fragment, and the
switch sets the aggregation count to 1. Otherwise, it compares the
fragment id with its record. If the fragment id is not matched,
we say a collision happens. Since the corresponding memory
unit is aggregating another gradient fragment, the switch drops
the incoming fragment and performs rate synchronization. If the
fragment id is matched, the switch accumulates the value of the
incoming fragment into the stored values and increments the
aggregation count. Once the programmable switch finishes the
gradient fragment’s aggregation (i.e., the number of aggregation
equals the aggregation number of the routing policy), it will send
this fragment to the PS, releasing the corresponding memory unit
for aggregating the following gradient fragments.

5.2 Rate Synchronization
Once a collision happens, the programmable switch will send a
control packet to inform the corresponding worker to adjust the
gradient sending rate. The reason for collision is that the gradient
fragment with the larger fragment id arrives at the programmable
switch, while the corresponding memory unit doesn’t complete
the aggregation of the gradient fragment with the smaller fragment
id. Therefore, the programmable switch turns down the gradient
sending rate of the worker with the larger fragment id to avoid
the asynchronous arrival of gradient fragments. Like TCP, the
programmable switches use ECN marks as the signal of control
packets. Workers use sending window size to control gradient
sending rates. Each worker applies additive increase multiplicative
decrease to adjust its window size in response to aggregated gradi-
ents and control packets [5]. At the begining, workers maintain the
same window size. When workers receive the aggregated packets
from the PS, they increase the window size by one MTU until
it reaches a threshold. On receiving a control packet, the worker
halves the window size and updates the threshold of the updated
window to turn down the gradient sending rates. The worker will
resend the gradient packet with the same fragment id as the control
packet to continue the aggregation.

6 PERFORMANCE EVALUATION

In this section, we compare GRID with state-of-the-art solutions.
We first give the metrics and benchmarks for performance com-
parison (Section 6.1). Then, we construct a small-scale testbed
with Wedge100BF-32x programmable switches [52] to test the
efficiency of GRID (Section 6.2). Finally, to complement the
small-scale testbed experiments, we perform simulations to show
the theoretical performance of GRID in large-scale scenarios
(Section 6.3).

6.1 Performance Metrics and Benchmarks
Metrics. We adopt the following performance metrics for perfor-
mance comparison: (1) the training throughput; (2) the gradient
sending rate; (3) the per-iteration time; (4) the communication
time per iteration; (5) the test accuracy; (6) the aggregation rate of
programmable switches; (7) the aggregation rate of the PS.

During a testbed run, we measure the number of processed
samples (e.g., images) per second as the training throughput. We

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 9

S1

S3 S2

PSW2 W1

W3

W4

W5

W6

W8 W7

Fig. 3: Topology of the testbed consisting of 1 PS, 8 workers (W1-
W8) and 3 programmable switches (S1-S3). All the components are
connected via 100 Gbps links.

AlexNet Inception-V3 ResNet50 VGG16 BERT LSTM
Models

0

150

300

450

600

T
h

ro
u

gh
p

u
t

(i
m

ag
es

/s
)

GRID
ATP
SwitchML
Geryon

Fig. 4: Training Throughput vs. Models

use iftop [61] to monitor the egress bandwidth usage of each
worker as the gradient sending rate. Moreover, we record the time
between two consecutive iterations as the per-iteration time. In
each iteration, we measure the duration starting from the time a
worker starts sending a gradient till the time that worker receives
the aggregated gradient as the comunication time per iteration.
Besides, we measure the proportion between the amount of the
data correctly predicted by the model to that of all data in the test
set as the test accuracy.

During a simulation run, we measure the total amount of
gradients aggregated by switches per second as the aggregation
rate of programmable switches. We measure the ingress bandwidth
load of the PS, as the aggregation rate of the PS.
Benchmarks. We compare GRID with three benchmarks. The
first benchmark is a communication scheduling scheme without
considering in-network aggregation, called Geryon [12]. Geryon
selects the shortest path to the PS for each gradient under the re-
source constraints. The second one is ATP [5], which performs in-
network aggregation at multiple racks of programmable switches.
Each worker sends the gradient to the PS via pre-defined routing
paths, where the gradient is aggregated in the first encountered
aggregation node with available processing capacity. The last one
is an in-network aggregation framework called SwitchML [7],
which minimizes the communication overheads at each rack. For
fair evaluation, we further accelerate the training of SwitchML by
sending the aggregated gradients of the programmable switch to
the PS for global aggregation.

6.2 Testbed Evaluation
Settings. We use 9 servers and 3 Wedge100BF-32x programmable
switches [52] to build the testbed. The topology of the testbed

is shown in Fig. 3. Specifically, each server has one NVIDIA
GeForce RTX 3090, a 22-core Intel Xeon 6152 processor and a
Mellanox ConnectX-6 100G dual-port NIC. All the servers run
Ubuntu 18.04 with CUDA 11.6. The NIC driver of all servers
is Mellanox driver OFED 5.5-1.0.3.2. All programmable switches
feature Intel Tofino chip with Software Development Environment
(SDE) 9.7.0 [62]. Moreover, these servers and programmable
switches are connected by 100 Gbps links as shown in Fig. 3.

Similar to [5], each server runs PyTorch [63] to perform
distributed training tasks. For the gradient routing policies, we
pre-calculate the routing scheme of our algorithm with PuLP [58]
in the PS. After that, the PS publishes the routing policies to
programmable switches and workers. Specifically, for each switch,
the PS can connect it with the Secure Shell (SSH) protocol and
publishes a unique id and a forwarding table using the Barefoot
Runtime Interface (BRI). For each worker, the PS publishes the id
of its aggregation node using the DistributedDataParallel module
provided by Pytorch. We implement in-network aggregation in
programmable switches by writing the P4-16 program for the
Tofino Native Architecture (TNA). The programmable switches
can aggregate 64 elements per gradient packet using one switch
pipeline. We implement routing and aggregation logic in multiple
stages of the ingress pipeline and packet control logic in the egress
pipeline.
Overall performance comparision. In this set of evaluations,
we run several popular models: AlexNet [64], Inception-V3 [65],
ResNet50 [1], VGG16 [66], BERT [2] and LSTM [67], to evaluate
the training throughput performance. We train AlexNet, Inception-
V3, ResNet50 and VGG16 on Cifar-100 dataset [68] and BERT
and LSTM on wikitext-2 [69] dataset. The batch size is set as
64 for all models. As shown in Fig. 3, the network topology
consists of 8 workers and 1 PS, and overall performance results
are shown in Fig. 4. We can see that GRID obtains the highest
training throughput among the four algorithms. For example,
GRID achieves the throughput of 267 images/s on average when
training ResNet50, while ATP, SwitchML and Geryon obtain the
throughputs of 239 images/s, 228 images/s and 181 images/s,
respectively. When the model is VGG16, GRID increases the
throughput by 27.2%, 38.5% and 71.3% on average, compared
with ATP, SwitchML and Geryon, respectively. The reason is that
GRID decreases the communication time by selecting optimal
gradient routing policy to perform efficient in-network aggre-
gation. To save space, we only conduct a detailed performance
comparison of all solutions with Inception-V3 and VGG16.
Performance comparision on per iteration training. In this
set of evaluations, we estimate the performance of per iteration
training. The network initially contains 2 workers (W1, W2), 1
programmable switch (S1) and the PS. Then we add 2 workers
(W3, W4) and 1 programmable switch (S2) to the network.
Similarly, we then add W5, W6 and S3 to the network. The final
topology contains 8 workers, 3 programmable switches and the
PS (i.e., Fig. 3). The evaluation results are shown in Figs. 5-8.
From Fig. 5, we can see that GRID can always achieve the highest
gradient sending rate as the number of workers increases. For
example, given 8 workers in Fig. 5(a), the communication through-
put of GRID, ATP, SwitchML and Geryon are 16.9 Gbps, 12.0

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 10

2 4 6 8
No. of Workers

0

15

30

45

60

S
en

d
in

g
R

at
e

(G
b

p
s) GRID

SwitchML
ATP
Geryon

(a) Inception-V3

2 4 6 8
No. of Workers

0

15

30

45

60

S
en

d
in

g
R

at
e

(G
b

p
s) GRID

SwitchML
ATP
Geryon

(b) VGG16

Fig. 5: Gradient Sending Rate vs. No. of Workers

2 4 6 8
No. of Workers

0

2.5

5

7.5

10

12.5

C
om

m
.

T
im

e
(s

)

GRID
ATP
SwitchML
Geryon

(a) Inception-V3

2 4 6 8
No. of Workers

0

5

10

15

20

25

C
om

m
.

T
im

e
(s

)

GRID
ATP
SwitchML
Geryon

(b) VGG16

Fig. 6: Communication Time vs. No. of Workers

2 4 6 8
No. of Workers

0

4

8

12

16

20

P
er

It
er

at
io

n
T

im
e

(s
)

GRID
ATP
SwitchML
Geryon

(a) Inception-V3

2 4 6 8
No. of Workers

0

6

12

18

24

30

36
P

er
It

er
at

io
n

T
im

e
(s

)
GRID
ATP
SwitchML
Geryon

(b) VGG16

Fig. 7: Per-Iteration Time vs. No. of Workers

2 4 6 8
No. of Workers

0

110

220

330

440

550

T
h

ro
u

gh
p

u
t

(i
m

ag
es

/s
)

GRID
ATP
SwitchML
Geryon

(a) Inception-V3

2 4 6 8
No. of Workers

0

60

120

180

240

300

360

T
h

ro
u

gh
p

u
t

(i
m

ag
es

/s
)

GRID
ATP
SwitchML
Geryon

(b) VGG16

Fig. 8: Training Throughput vs. No. of Workers

Gbps, 11.4 Gbps and 8 Gbps, respectively. GRID can increase the
gradient sending rates by 40.8%, 48.2% and 111.3%, compared
with ATP, SwitchML and Geryon, respectively. The reason is that
GRID can select efficient routing paths and aggregation nodes
by leveraging the proposed R-GRIA algorithm. Fig. 6 shows that
GRID always has the least communication time in each iteration.
For example, when the number of workers is 8 in Fig. 6(b),
GRID decreases the communication time by 38.4%, 41.2% and
60.1%, compared with ATP, SwitchML and Geryon, respectively.
The reason is that GRID has the highest gradient sending rate
(as described in Fig. 5), thus reducing the communication time.
Fig. 7 shows the per-iteration time with different numbers of
workers. Note that per-iteration time consists of the local training
and communication time. Our method doesn’t optimize the local
training time but can co-exist with solutions decreasing local
training time if needed. We can see that, as the number of workers
increases, the per-iteration time increases too, while GRID always
obtains the least per-iteration time. Given 8 workers in Fig. 7(b),
the per-iteration times of GRID, ATP, SwitchML and Geryon are
19.2s, 24.5s, 25.6s and 31.2s, respectively. Thus, we can conclude
that by decreasing the communication time, GRID reduces the
per-iteration time by 21.6%, 25% and 38.5%, compared with
ATP, SwitchML and Geryon, respectively. Fig. 8 shows that as the
number of workers increases, GRID can always obtain the highest
training throughput. For example, given 8 workers in Fig. 8(b),
the training throughput of GRID is 17.4%, 25.5% and 52.7%
higher than that of ATP, SwitchML and Geryon, respectively. The
reason is that we have designed the R-GRIA algorithm to select
a better gradient routing scheme with in-network aggregation,
thereby increasing the gradient sending rate.
Performance comparison on end-to-end training. In this set of
evaluations, we run two end-to-end distributed training tasks to
evaluate the performance of training time and accuracy. Specif-
ically, we set the number of training iterations of Inception-V3
and VGG16 to 200 and 500, respectively. From Figs. 9-10, we
can see that GRID always takes the least time to complete the

same number of iterations compared with other alternatives. Fig.
9 shows that, GRID takes the least time to complete the distributed
training task. Fig. 10 further indicates that GRID can obtain the
specified test accuracy with the least time. For instance, in Fig.
10, when the mode is Inception-V3, GRID takes 1830s to finish
all the training iterations, while ATP, SwitchML and Geryon take
2592s, 2666s and 3268s to complete. Besides, GRID first achieves
an accuracy of 0.7925 in 968s, while that time of ATP, SwitchML
and Geryon are 1568.16s, 1612.93s and 1977.14s, respectively. It
means that GRID can reach the target accuracy 1.61×, 1.66×
and 2.04× faster than ATP, SwitchML and Geryon. The results
show that proper gradient routing with in-network aggregation can
significantly speed up the distributed model training.
Summary. From the above testbed evaluation results, we can draw
some conclusions. First, Fig. 4 shows that GRID can improve the
training throughput by about 30% on average compared with other
alternatives for distributed model training. Second, in Figs. 5-8,
we can see that GRID reduces per-iteration time by about 25% on
average compared with ATP, SwitchML and Geryon. At last, from
Figs. 9-10, we believe GRID can achieve similar test accuracy
with other alternatives, which takes more time to complete the
training than GRID.

6.3 Simulation Evaluation
Settings. Our simulations are implemented on a physical server
equipped with an Intel Core i9-10900 processor and 64GB RAM.
We adopt the linear programming solver PuLP [58] to compute
the routing policies. Note that, although mininet [70] supports
replacing switches with bmv2 [71] software p4 switches, it faces
a critical performance problem. After testing, we found that, when
the scale of topologies increases to tens of hosts, the bandwidth of
bmv2 switches will degrade to several Mbps with high packet loss
rates. The experimental results of the work [72] also confirmed
this conclusion. Therefore, we didn’t choose to perform large-
scale simulations through bmv2 and mininet, but through running
the algorithm simulations.

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 11

0 40 80 120 160 200
No. of Iterations

0

1

2

3

4

T
ra

in
in

g
T

im
e

(x
10

3 s) GRID
ATP
SwitchML
Geryon

(a) Inception-V3

0 100 200 300 400 500
No. of Iterations

0

4

8

12

16

T
ra

in
in

g
T

im
e

(x
10

3 s) GRID
ATP
SwitchML
Geryon

(b) VGG16

Fig. 9: Training Time vs. No. of Iterations

0 0.5 1 1.5 2 2.5 3
Time (x103 s)

0

0.2

0.4

0.6

0.8

1

T
es

t
A

cc
u

ra
cy

GRID
ATP
SwitchML
Geryon

(a) Inception-V3

0 3 6 9 12 15
Time (x103s)

0.1

0.2

0.3

0.4

0.5

0.6

T
es

t
A

cc
u

ra
cy

GRID
ATP
SwitchML
Geryon

(b) VGG16

Fig. 10: Test Accuracy vs. Time

40 60 80 100
No. of Workers

0

15

30

45

60

S
en

d
in

g
R

at
e

(G
b

p
s) GRID

ATP
SwitchML
Geryon

(a) the fat-tree topology

100 150 200 250
No. of Workers

0

20

40

60

80
S

en
d

in
g

R
at

e
(G

b
p

s) GRID
ATP
SwitchML
Geryon

(b) the leaf-spine topology

Fig. 11: Gradient Sending Rate vs. No. of Workers in (a)

40 60 80 100
No. of Workers

0

15

30

45

60

S
en

d
in

g
R

at
e

(G
b

p
s) GRID

ATP
SwitchML
Geryon

(a) the fat-tree topology

100 150 200 250
No. of Workers

0

20

40

60

80

S
en

d
in

g
R

at
e

(G
b

p
s) GRID

ATP
SwitchML
Geryon

(b) the leaf-spine topology

Fig. 12: Gradient Sending Rate vs. No. of Workers in (b)

We first obtain the gradient sending rates and aggregation
policy by running the algorithm R-GRIA. Combining the gradient
sending rate and aggregation policy, we can calculate the gradient
aggregation rate of programmable switches and PS. Specifically,
we accumulate the gradient sending rates of workers, whose aggre-
gation nodes are programmable switches as the aggregation rate
of programmable switches. Similarly, we accumulate the gradient
sending rate of programmable switches and workers, which send
gradients to the PS, as the aggregation rate of the PS.

We select two practical topologies to verify the theoretical
performance of GRID’s routing algorithm. The first topology is
the classical fat-tree topology [25], which contains 80 switches
(32 edge switches, 32 aggregation switches and 16 core switches)
and 192 servers. The second topology is a leaf-spine topology
[26], which consists of 60 switches (30 spine switches and 30
leaf switches) and 500 servers. For both topologies, each element
is connected with 100 Gbps links. The ingress bandwidth of the
PS is set to 100 Gbps. Since the Wedge100BF-32x programmable
switches contain 32 ports, each of which has a maximum band-
width of 100 Gbps, we randomly set the processing capacity of
programmable switches from 100 Gbps to 3.2 Tbps.

The simulations are performed under two scenarios. In the
first scenario, we set the ToR switches in the fat-tree topology
(leaf switches in the leaf-spine topology) as the programmable
switches, similar to ATP [5]. Since the current datacenters deploy
programmable switches as the ToR switches [5, 7], we evaluate
the performance of GRID in large-scale datacenter programmable
networks in this scenario, denoted by (a). In the second sce-
nario, we randomly select 20% of the switches as programmable
switches. Considering the popularity of programmable switches
[73–75], we think that in the future programmable switches will
be deployed throughout the datacenter network, not just as the
ToR switches. Therefore, we evaluate the performance of GRID
in general (programmable switches are not only deployed as ToR
switches) large-scale programmable networks in this scenario,
denoted by (b).

Comparison on gradient sending rate. This set of simula-
tions gives the gradient sending rates comparison among these
four algorithms and the results are shown in Figs. 11-12. We
can see that, as the number of workers increases, the average
gradient sending rate decreases, while GRID always obtains the
highest gradient sending rate compared with other alternatives.
As shown in Fig. 11(a), given 40 workers, GRID outperforms
the gradient sending rate by 0.19×, 2× and 11×, compared
with ATP, SwitchML and Geryon. In scenario (a), the number
of workers per rack (6 in the fat-tree topology and 16 in the leaf-
spine topology) is determined. Due to the fixed routing paths of
ATP and SwitchML, each programmable switch can only serve
the workers in the same rack, resulting in underutilization. As
the number of workers increases, the number of programmable
switches increases so that the PS will receive more aggregated
gradients from the switches. As a result, the ingress bandwidth of
PS becomes the bottleneck of the scenario, limiting the gradient
sending rates of workers. Since GRID decides the optimal ag-
gregation nodes for workers, it can perform efficient in-network
aggregation with fewer programmable switches than ATP and
SwitchML, improving the gradient sending rates of workers. In
the fat-tree topology in scenario (b), when the number of workers
is 100, the average communication throughputs of GRID, ATP,
SwitchML and Geryon are 23.5 Gbps, 10 Gbps, 8.9 Gbps and 1
Gbps, respectively. GRID outperforms the gradient sending rate
by 1.35×, 1.64× and 22.5× compared with ATP, SwitchML
and Geryon, respectively. The reason is that our algorithm selects
proper gradient aggregation nodes for workers to achieve efficient
in-network aggregation.
Comparison on gradient aggregation rate. This set of simula-
tions is conducted to illustrate the aggregation rate performance
of the programmable switches and the PS. The results are shown
in Figs. 13-16. Since Geryon doesn’t perform in-network aggrega-
tion, we omit it in Figs. 13-14. From Figs. 13-14 we can see that as
the number of workers increases, GRID can consistently achieve
the highest in-network aggregation throughput. Specifically, in

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 12

40 60 80 100
No. of Workers

0

100

200

300

400

500

R
at

e
of

S
w

it
ch

es
(G

b
p

s)

GRID
SwitchML
ATP

(a) the fat-tree topology

100 150 200 250
No. of Workers

0

4

8

12

16

R
at

e
of

S
w

it
ch

es
(T

b
p

s)

GRID
SwitchML
ATP

(b) the leaf-spine topology

Fig. 13: Aggregation Rate of Switches vs. No. of Workers in (a)

40 60 80 100
No. of Workers

0

100

200

300

400

500

R
at

e
of

S
w

it
ch

es
(G

b
p

s)

GRID
SwitchML
ATP

(a) the fat-tree topology

100 150 200 250
No. of Workers

0

4

8

12

16

R
at

e
of

S
w

it
ch

es
(T

b
p

s)

GRID
SwitchML
ATP

(b) the leaf-spine topology

Fig. 14: Aggregation Rate of Switches vs. No. of Workers in (b)

40 60 80 100
No. of Workers

0

40

80

120

160

R
at

e
of

th
e

P
S

(G
b

p
s) SwitchML

GRID
ATP
Geryon

(a) the fat-tree topology

100 150 200 250
No. of Workers

0

40

80

120

160
R

at
e

of
th

e
P

S
(G

b
p

s) SwitchML
GRID
ATP
Geryon

(b) the leaf-spine topology

Fig. 15: Aggregation Rate of the PS vs. No. of Workers in (a)

40 60 80 100
No. of Workers

0

40

80

120

160

R
at

e
of

th
e

P
S

(G
b

p
s) SwitchML

GRID
ATP
Geryon

(a) the fat-tree topology

100 150 200 250
No. of Workers

0

40

80

120

160

R
at

e
of

th
e

P
S

(G
b

p
s) SwitchML

GRID
ATP
Geryon

(b) the leaf-spine topology

Fig. 16: Aggregation Rate of the PS vs. No. of Workers in (b)

Fig. 14(a), given 100 workers, the throughput of in-network
aggregation of GRID, ATP and SwitchML are 465 Gbps, 148 Gbps
and 178.45 Gbps, respectively. GRID improves the in-network
aggregation throughput by 214% and 161.2% compared with ATP
and SwitchML, respectively. Figs. 15-16 shows that GRID can
utilize almost all ingress bandwidths of the PS for aggregation.
For example, in Fig. 16(a), when the number of workers is 40,
the aggregation throughput of the PS of SwitchML, GRID, ATP
and Geryon are 81.6 Gbps, 86 Gbps, 95 Gbps and 100 Gbps,
respectively. The reason is that, ATP and SwitchML ignore the
importance of gradient routing, unable to utilize the aggregation
capability of programmable switches efficiently. In contrast, GRID
can select the optimal aggregation node for each worker to fully
utilize the processing capacities of the programmable switches and
the PS. Note that, in scenario (a), the ingress bandwidth of the PS
is the bottleneck, so the aggregation rates of the PS are always
100Gbps.
Summary. From these simulation results, we can draw some
conclusions. First, from Figs. 11-12 we can see that GRID
achieves the highest gradient sending rate, which means GRID can
speed up the distributed model training by performing efficient in-
network aggregation. Second, Figs. 13-16 show that, by selecting
the optimal aggregation nodes for workers, GRID can obtain a
high aggregation rate of programmable switches and the PS.

7 CONCLUSION

In this paper, we present a framework called Gradient Routing
with In-network Aggregation for Distributed Training (GRID) to
accelerate distributed model training in clusters. In the control
plane, we formulate the GRIA problem, and propose an efficient
randomized rounding based algorithm, named R-GRIA, to solve
the problem. We further analyze the performance of R-GRIA. In
the data plane, we design and implement in-network aggregation
to ensure correct execution of routing policies in programmable

switches. Extensive experimental and simulation results show that
GRID can achieve high training throughput and speed up the
distributed model training.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” ArXiv, vol. abs/1810.04805, 2019.

[3] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM
Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.

[4] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krish-
namurthy, “Parameter hub: a rack-scale parameter server for
distributed deep neural network training,” in Proceedings of the
ACM Symposium on Cloud Computing, 2018, pp. 41–54.

[5] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and
M. M. Swift, “Atp: In-network aggregation for multi-tenant
learning.” in NSDI, 2021, pp. 741–761.

[6] J. Fei, C.-Y. Ho, A. N. Sahu, M. Canini, and A. Sapio, “Efficient
sparse collective communication and its application to accelerate
distributed deep learning,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 676–691.

[7] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim,
A. Krishnamurthy, M. Moshref, D. Ports, and P. Richtarik,
“Scaling distributed machine learning with {In-Network} ag-
gregation,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), 2021, pp. 785–808.

[8] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “Tictac: Accel-
erating distributed deep learning with communication schedul-
ing,” Proceedings of Machine Learning and Systems, vol. 1, pp.
418–430, 2019.

[9] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhi-
menko, “Priority-based parameter propagation for distributed
dnn training,” in Proceedings of Machine Learning and Systems,
A. Talwalkar, V. Smith, and M. Zaharia, Eds., vol. 1, 2019, pp.
132–145.

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 13

[10] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed
dnn training acceleration,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 16–29.

[11] M. Cho, U. Finkler, D. Kung, and H. Hunter, “Blueconnect:
Decomposing all-reduce for deep learning on heterogeneous net-
work hierarchy,” Proceedings of Machine Learning and Systems,
vol. 1, pp. 241–251, 2019.

[12] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating distributed
cnn training by network-level flow scheduling,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 1678–1687.

[13] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” arXiv preprint arXiv:1704.05021, 2017.

[14] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“Qsgd: Communication-efficient sgd via gradient quantization
and encoding,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[15] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: Reducing the communication bandwidth
for distributed training,” arXiv preprint arXiv:1712.01887, 2017.

[16] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and
H. Li, “Terngrad: Ternary gradients to reduce communication
in distributed deep learning,” Advances in neural information
processing systems, vol. 30, 2017.

[17] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana,
“E3:Energy-Efficient microservices on SmartNIC-Accelerated
servers,” in 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019, pp. 363–378.

[18] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and
A. Krishnamurthy, “Gimbal: enabling multi-tenant storage dis-
aggregation on smartnic jbofs,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 106–122.

[19] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Se-
shan, “Tea: Enabling state-intensive network functions on pro-
grammable switches,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for
computer communication, 2020, pp. 90–106.

[20] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive
survey on p4 programmable data plane switches: Taxonomy,
applications, challenges, and future trends,” IEEE Access, vol. 9,
pp. 87 094–87 155, 2021.

[21] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer,
G. Bloch, D. Goldenerg, M. Dubman, S. Kotchubievsky,
V. Koushnir et al., “Scalable hierarchical aggregation protocol
(sharp): a hardware architecture for efficient data reduction,” in
2016 First International Workshop on Communication Optimiza-
tions in HPC (COMHPC). IEEE, 2016, pp. 1–10.

[22] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang,
“Accelerating distributed reinforcement learning with in-switch
computing,” in 2019 ACM/IEEE 46th Annual International Sym-
posium on Computer Architecture (ISCA). IEEE, 2019, pp.
279–291.

[23] B. Fortz and M. Thorup, “Internet traffic engineering by opti-
mizing ospf weights,” in Proceedings IEEE INFOCOM 2000.
conference on computer communications. Nineteenth annual
joint conference of the IEEE computer and communications
societies (Cat. No. 00CH37064), vol. 2. IEEE, 2000, pp. 519–
528.

[24] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang,
“Traffic engineering in software-defined networking: Measure-
ment and management,” IEEE access, vol. 4, 2016.

[25] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, com-

modity data center network architecture,” ACM SIGCOMM
computer communication review, vol. 38, no. 4, pp. 63–74, 2008.

[26] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella, “Presto: Edge-based load balancing for fast datacenter
networks,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 465–478, 2015.

[27] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and
L. Zhou, “Gandiva: Introspective cluster scheduling for deep
learning,” in Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’18.
USA: USENIX Association, 2018, p. 595–610.

[28] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-
efficient distributed deep learning: A comprehensive survey,”
2020.

[29] S. Shalev-Shwartz and S. Ben-David, Understanding machine
learning: From theory to algorithms. Cambridge university
press, 2014.

[30] J. Wang, H. Liang, and G. Joshi, “Overlap local-sgd: An algo-
rithmic approach to hide communication delays in distributed
sgd,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2020, pp. 8871–8875.

[31] J. Wang and G. Joshi, “Adaptive communication strategies to
achieve the best error-runtime trade-off in local-update sgd,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 212–
229, 2019.

[32] ——, “Cooperative sgd: A unified framework for the design
and analysis of communication-efficient sgd algorithms,” arXiv
preprint arXiv:1808.07576, 2018.

[33] Y. Li, M. Yu, S. Li, S. Avestimehr, N. S. Kim, and A. Schwing,
“Pipe-sgd: A decentralized pipelined sgd framework for dis-
tributed deep net training,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[34] S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos, “Detox:
A redundancy-based framework for faster and more robust gra-
dient aggregation,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[35] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized
stochastic gradient descent,” Advances in neural information
processing systems, vol. 23, 2010.

[36] R. McDonald, K. Hall, and G. Mann, “Distributed training
strategies for the structured perceptron,” in Human language
technologies: The 2010 annual conference of the North Amer-
ican chapter of the association for computational linguistics,
2010, pp. 456–464.

[37] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “Rsa:
Byzantine-robust stochastic aggregation methods for distributed
learning from heterogeneous datasets,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 1544–1551.

[38] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggre-
gated gradient for communication-efficient distributed learning,”
Advances in Neural Information Processing Systems, vol. 31,
2018.

[39] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practical
low-rank gradient compression for distributed optimization,”
Advances in Neural Information Processing Systems, vol. 32,
2019.

[40] M. Li, “Scaling distributed machine learning with the parameter
server,” in Proceedings of the 2014 International Conference
on Big Data Science and Computing, ser. BigDataScience ’14.
New York, NY, USA: Association for Computing Machinery,
2014.

FANG et al.: GRID: GRADIENT ROUTING WITH IN-NETWORK AGGREGATION FOR DISTRIBUTED TRAINING 14

[41] A. Sergeev and M. Del Balso, “Horovod: fast and easy
distributed deep learning in tensorflow,” 2018. [Online].
Available: https://arxiv.org/abs/1802.05799

[42] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce al-
gorithms for clusters of workstations,” Journal of Parallel and
Distributed Computing, vol. 69, no. 2, pp. 117–124, 2009.

[43] Z. Cheng and Z. Xu, “Bandwidth reduction using importance
weighted pruning on ring allreduce,” 2019. [Online]. Available:
https://arxiv.org/abs/1901.01544

[44] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishna-
murthy, “Parameter hub,” in Proceedings of the ACM Symposium
on Cloud Computing. ACM, oct 2018.

[45] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. The-
lin, and I. Stoica, “Blink: Fast and generic collectives for
distributed ml,” Proceedings of Machine Learning and Systems,
vol. 2, pp. 172–186, 2020.

[46] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified
architecture for accelerating distributed {DNN} training in het-
erogeneous {GPU/CPU} clusters,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20),
2020, pp. 463–479.

[47] R. Bhaskar, R. Jaiswal, and S. Telang, “Congestion lower bounds
for secure in-network aggregation,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks, 2012, pp. 197–204.

[48] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis,
“Tina: A scheme for temporal coherency-aware in-network
aggregation,” in Proceedings of the 3rd ACM international
workshop on Data engineering for wireless and mobile access,
2003, pp. 69–76.

[49] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Quantized neural networks: Training neural networks with
low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[50] L. Mai, L. Rupprecht, A. A. Alim, P. Costa, M. Migliavacca,
P. Pietzuch, and A. Wolf, “Netagg: Using middleboxes for
application-specific on-path aggregation in data centres,” 12
2014.

[51] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,”
in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’12. USA:
USENIX Association, 2012, p. 3.

[52] Intel tofino. Accessed: Oct. 20, 2021. [Online].
Available: https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series.html

[53] Nvidia mellanox. Accessed: Feb. 28, 2022. [On-
line]. Available: https://support.mellanox.com/s/productdetails/
a2v1T000001JQCQQA4/sn4700

[54] Netfpga. Accessed: Feb. 28, 2022. [Online]. Available:
https://netfpga.org/

[55] N. Gebara, M. Ghobadi, and P. Costa, “In-network aggregation
for shared machine learning clusters,” Proceedings of Machine
Learning and Systems, vol. 3, pp. 829–844, 2021.

[56] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al.,
“P4: Programming protocol-independent packet processors,”
ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, 2014.

[57] R. Segal, C. Avin, and G. Scalosub, “Soar: minimizing network
utilization with bounded in-network computing,” in Proceedings
of the 17th International Conference on emerging Networking
EXperiments and Technologies, 2021, pp. 16–29.

[58] Pulp. Accessed: July. 20, 2021. [Online]. Available: https:

//pypi.org/project/PuLP/
[59] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,

M. Ranzato, A. Senior, P. Tucker, K. Yang et al., “Large scale
distributed deep networks,” Advances in neural information
processing systems, vol. 25, pp. 1223–1231, 2012.

[60] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick,
K. Bergman, A. Vahdat, B. Klenk, and E. Ebrahimi, “Sip-
ml: High-bandwidth optical network interconnects for machine
learning training,” in Proceedings of the 2021 ACM SIGCOMM
2021 Conference. Association for Computing Machinery, 2021,
pp. 657–675.

[61] iftop. Accessed: Apr. 14, 2022. [Online]. Available: http:
//www.ex-parrot.com/~pdw/iftop/

[62] Intel p4 studio sde. Accessed: Apr. 9, 2022.
[Online]. Available: https://www.intel.com/content/www/us/
en/products/docs/network-io/ethernet-programmable-switch/
ica-1131-prospectus.html

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035.

[64] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[65] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
2015.

[66] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2015.

[67] A. Graves and J. Schmidhuber, “Framewise phoneme classifica-
tion with bidirectional lstm and other neural network architec-
tures,” Neural networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[68] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-100 (canadian
institute for advanced research).” [Online]. Available: http:
//www.cs.toronto.edu/~kriz/cifar.html

[69] The wikitext long term dependency language modeling
dataset. Accessed: Apr. 9, 2022. [Online]. Avail-
able: https://www.salesforce.com/products/einstein/airesearch/
the-wikitext-dependency-language-modeling-dataset/

[70] An instant virtual network on your laptop. [Online]. Available:
http://mininet.org

[71] Behavioral model version 2 (bmv2). [Online]. Available:
https://github.com/p4lang/behavioral-model

[72] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis,
“In-network computation is a dumb idea whose time has come,”
in Proceedings of the Sixteenth ACM Workshop on Hot Topics in
Networks, 2017.

[73] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “Incremental
deployment of programmable switches for network-wide heavy-
hitter detection,” in 2019 IEEE Conference on Network Soft-
warization (NetSoft). IEEE, 2019, pp. 160–168.

[74] Y. Shi, M. Wen, and C. Zhang, “Incremental deployment of pro-
grammable switches for sketch-based network measurement,”
in 2020 IEEE Symposium on Computers and Communications
(ISCC). IEEE, 2020, pp. 1–7.

[75] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint
switch upgrade and controller deployment in hybrid software-
defined networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1012–1028, 2019.

