
Computer Networks 233 (2023) 109882

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Reveal: Robustness-aware VNF placement and request scheduling in edge
clouds
Jin Fang a,b, Gongming Zhao a,b,∗, Hongli Xu a,b,∗, Huaqing Tu a,b, Haibo Wang c

a School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
b Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
c Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, USA

A R T I C L E I N F O

Keywords:
Edge cloud
VNF placement
Request scheduling
Robustness

A B S T R A C T

In the edge cloud network, service providers place virtual network functions (VNFs) in edge clouds to serve
users’ requests. Thus, it is essential to consider VNF placement and request scheduling in edge clouds. Existing
works often focus on minimizing request completion time or maximizing network throughput to utilize network
resources and ensure users’ QoS efficiently. However, they ignore two practical factors: malicious users
and failed VNFs, leading to poor network robustness. To this end, this paper studies robustness-aware VNF
placement and request scheduling, named Reveal. Specifically, we limit the number of VNFs each user can
access and the number of users each VNF can serve to control the influence scope of malicious users and VNF
failures. Since placing VNFs is time-consuming and requests arrive dynamically, we solve this problem through
two phases: robust VNF placement and assignment, and online request scheduling. For the first phase,
we design an efficient knapsack-based rounding algorithm with bounded approximation factors. For online
request scheduling, we propose a primal–dual based algorithm with a competitive ratio of

[

1 − 𝜖, 𝑂(log 1∕𝜖)
]

where 𝜖 ∈ (0, 1). Experiment and simulation results show that Reveal can achieve better performance and
robustness than other alternatives.
1. Introduction

Due to the development of the Internet of Things and 5G, the
computing paradigm is shifting from centralized cloud computing to
distributed cloud computing such as edge clouds [1,2]. Compared with
centralized cloud computing, edge cloud pushes computing capabil-
ities to the network edge, saving backhaul transmission bandwidth
and reducing transmission delay. Therefore, it is suitable for real-
time applications (e.g., online gaming [3], stream video [4] and object
recognition [5]).

A typical edge cloud comprises an edge server and a base sta-
tion. Service providers supply services by placing VNFs (e.g., fire-
wall, load balancer) in edge servers [6], while users obtain services
through forwarding requests to corresponding VNFs [7]. Since the
resource capacity of the edge server is limited, it is essential to consider
VNF placement and request scheduling in edge clouds. Existing works
on VNF placement and request scheduling mainly focus on minimiz-
ing request completion time [8,9] or maximizing network throughput
[10,11]. For example, the authors in [8] consider the scenario of a
dense edge cloud, where each user can reach multiple edge nodes
simultaneously. They propose an online algorithm to minimize the

∗ Corresponding authors.
E-mail addresses: fangjin98@mail.ustc.edu.cn (J. Fang), gmzhao@ustc.edu.cn (G. Zhao), xuhongli@ustc.edu.cn (H. Xu).

computation latency with energy constraints. Work [11] considers the
problem of VNF placement and request scheduling to maximize the
network throughput.

However, the above works ignore the following two factors, which
will degrade the robustness of the edge cloud. The first factor is the
malicious users. There are massive users in edge clouds, and the
diversity of users brings more probability of malicious users [12–14].
For example, one malicious user can observe the location information
of other legitimate users by monitoring the traffic of VNFs [15]. The
malicious user needs to access as many VNFs to achieve high locating
accuracy and even track the movements of other users. The second
factor is the failed VNFs. Other than being attacked by malicious
users, VNF failures are also widespread. According to [16], the median
time between two consecutive firewall and load balancer failures is
7.5 h and 5.2 h, respectively. When a VNF is unavailable, the served
requests will be rescheduled to other available VNFs, which causes a
long rescheduling delay and decreases users’ QoS [17].

Although the robustness of the edge cloud can be enhanced by
installing security services (e.g., IDS [12]) or placing redundant VNFs
[17], these solutions consume additional resources. It is an unrealistic
vailable online 22 June 2023
389-1286/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2023.109882
Received 4 April 2023; Received in revised form 11 June 2023; Accepted 15 June
 2023

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:fangjin98@mail.ustc.edu.cn
mailto:gmzhao@ustc.edu.cn
mailto:xuhongli@ustc.edu.cn
https://doi.org/10.1016/j.comnet.2023.109882
https://doi.org/10.1016/j.comnet.2023.109882


Computer Networks 233 (2023) 109882J. Fang et al.

p

expectation to eliminate the negative influence caused by malicious
users and failed VNFs without other help. Instead, we may relax the
requirement and try to improve the robustness of the edge cloud,
such that the negative influence is limited. In this paper, we propose
robust VNF placement and request scheduling, which effectively al-
leviates the negative influence when encountering malicious users or
failed VNFs without consuming additional resources. Moreover, our
proposed method can coexist with existing solutions instead of trying
to substitute them, e.g., [12,17].

Specifically, we consider two robustness constraints when placing
VNFs and scheduling requests: (1) User constraint: Unlike legitimate
users, malicious users may try to access as many VNFs as possible to
expand the influence scope of the attacks. For example, a malicious user
may use malicious programs like Bolt [18] to collect user information
of the accessed VNFs, using this information to launch DoS attacks
against these accessed VNFs with a high success rate. Damage caused
by the malicious user increases as more VNFs is accessed. Thus, to limit
the influence scope of the malicious user, each user’s requests will be
scheduled to a limited number of VNFs. This way, we can control the
number of affected VNFs when encountering the malicious user. (2)
VNF constraint: the failure of VNF will result in an outage to the users
who have requests being served by it. The more users a VNF serves,
the more significant the negative impact caused by its failure (e.g.,
degrading the QoS of served user). As a result, to control the effect of
the VNF failure on users, each VNF will serve a limited number of users.
This way, we can limit the affected number of users when encountering
the VNF failure. The main contributions of this paper are as follows:

1. We present Reveal and define the problem of robustness-aware
VNF placement and request scheduling in edge clouds. We solve
this problem through robust VNF placement and assignment,
and online request scheduling to fit the practical scenario where
these two phases are performed in different time scales.

2. For robust VNF placement and assignment, we propose an ef-
ficient knapsack-based rounding algorithm with the approxima-
tion factor of 𝑂(log | |), where | | is the number of VNFs in the
edge cloud.

3. For online request scheduling, we present a primal–dual based
online algorithm with a competitive ratio of

[

1 − 𝜖, 𝑂(log 1
𝜖 )
]

where 𝜖 ∈ (0, 1).
4. We conduct a small-scale testbed based on Nvidia Jetson TX2s

and Raspberry Pis and a large-scale simulation based on real-
world datasets [19]. The results of experiments and simulations
show that our algorithms achieve better performance compared
with existing solutions.

The rest of this paper is organized as follows. Section 2 presents the
roblem statement and algorithm workflow of Reveal. In Section 3, we

illustrate how to determine VNF placement and assignment. Section 4
describes how to determine request scheduling. The experimental and
simulation results are presented in Section 5. The related works are
presented in Section 6. We conclude this paper in Section 7.

2. Preliminary

This section first presents an application scenario, which moti-
vates our research. Then we give the definition of network model and
the problem statement of Reveal. At last, we present the algorithm
workflow.

2.1. Application scenario and motivation

The degradation of user QoS may come from other users and the
VNF itself. Specifically, malicious users intend to access as many VNFs
to increase their influence [20]. When a VNF fails, it will affect all
the users it serves. Therefore, it is crucial to consider both aspects to
guarantee the robustness of edge clouds. In the following, we give an
2

application scenario to show the superiority of limiting the impact of
malicious users/failed VNFs.

An edge cloud can host many third-party services, where the user
data may be leaked to malicious users or untrusted services. On
one hand, 34% attacks in edge clouds are launched by authenti-
cated users [21]. One malicious authenticated user can hijack at-
tacked VNFs [22], monitor user information [21] or inject poisonous
data [23]. On the other hand, some untrusted service providers may fail
a VNF by injecting malicious program. These failed VNFs can process
the request of legitimate users but also track and analyze their data
for service providers [15]. Since these attacks are usually performed
by authenticated users or service providers, the traditional protection
methods may not classify them. We can weaken the privacy leakage
by limiting the number of VNFs/users each malicious user/failed VNF
can access. To this end, we design Reveal to improve the robustness of
edge clouds in this paper.

2.2. System model

Infrasture model. Let 𝑁 = {𝑛1, 𝑛2,… , 𝑛
|𝑁|

} denote the set of edge
clouds. Each edge cloud 𝑛 ∈ 𝑁 comprises an edge server with a
processing capacity 𝑃 (𝑛) and a base station covering a specified area.
One user can only access services on edge clouds if only it is covered
by the corresponding base stations. Moreover, a central controller is
hosted in the remote cloud, managing the whole network.

Multi-user model. The service provider can place VNF instances in
edge clouds, and users generate requests to access VNF instances for
serving. We use 𝐵 to represent the set of VNF types. For each type
𝑏 ∈ 𝐵, the service provider may create multiple VNF instances to satisfy
user demands. We use 𝑏 to denote the set of VNFs with type 𝑏. The
total set of VNFs in the network can be represented as  =

⋃

𝑏∈𝐵 𝑏.
For each VNF 𝑓 ∈  , its processing capacity is denoted as 𝑝(𝑓 ) and
placement cost, e.g., bandwidth consumption, is denoted as 𝑐(𝑓 ). Let
𝑈 = {𝑢1, 𝑢2,… , 𝑢

|𝑈 |

} denote the set of users. Each user generates
requests for computation offloading and obtains services by sending
requests to corresponding VNFs. Considering that the amount of user
traffic can be forecasted by the history data [24], we use 𝑡(𝑢) to denote
the estimated traffic amount of user 𝑢. The architecture is depicted in
Fig. 1.

2.3. Problem statement

Our goal is to minimize the VNF placement cost while maximizing
the network throughput. On one hand, we can avoid over-provision
VNFs and save network resources by reducing the VNF placement cost.
On the other hand, we attempt to maximize the network throughput to
satisfy the needs of as many users as possible.

Furthermore, we mainly consider the following two constraints to
improve the network robustness. (1) User constraint: Since malicious
users will try to access as many VNFs as possible to expand the attack
scope, it is necessary to limit the number of VNFs a malicious user can
access. Thus, each user’s request will be scheduled to no more than 𝑘
VNFs. By limiting the number of VNFs each user assigns, we can control
the impact of a malicious user. (2) VNF constraint: Since failed VNFs will
influence the QoS of served users, it is necessary to limit the number
of users a failed VNF will influence. As a result, each VNF will serve
no more than 𝑝 users. By limiting the number of users each VNF will
serve, we can control the impact of the VNF failure. The value of 𝑘 and
𝑝 can be determined by the network controller adopting methods such

as network measurement [25–27] and forecast [28–30].



Computer Networks 233 (2023) 109882J. Fang et al.
Fig. 1. System architecture and workflow of Reveal. In the first phase, Reveal determines VNF placement and assignment in a long-term intervals. In the second phase, Reveal
schedules the arrival requests to VNFs.
2.4. Algorithm workflow

We find that VNF placement and request scheduling often operate
on different time scales. On one hand, once a VNF is placed, it usually
performs its function on a long-term scale. For each edge cloud, fre-
quent creation and updating VNFs may result in enormous bandwidth
consumption. Therefore, we should determine the VNF placement ac-
cording to user demands at a longer interval. On the other hand, even
though the total traffic of each user may be relatively stable in the long
term [31], the user’s requests may be generated randomly, so we should
schedule the requests as soon as possible to ensure the user’s QoS. This
motivates us to design Reveal through two phases.

The first phase determines VNF placement based on user demands at
long-term intervals (e.g., hours). At the same time, we select a feasible
user set for each VNF with robustness constraints, i.e., VNF assignment.
In this way, we ensure that the request scheduling of each user does
not violate the robustness constraints. The objective of the phase is to
minimize the VNF placement cost. The algorithm will be described in
Section 3.3. The second phase is triggered by accidents, e.g., arrival
requests. At this phase, we decide how to schedule users’ requests
within the assigned VNFs. The objective of this phase is to maximize
the network throughput. Since requests are generated dynamically, we
design an online algorithm to schedule requests in Section 4.2.

3. Robust VNF placement and assignment

This section illustrates how to determine VNF placement and as-
signment on a long-term scale. We first formulate the Robust VNF
Placement and Assignment (RVPA) problem and analyze its complexity.
Then we propose a knapsack-based rounding algorithm. At last, we
analyze the approximation performance of the algorithm.
3

Table 1
Table of notations.

Notations Semantics

𝑁 The set of edge clouds
𝐵 The set of VNF types
𝑏 The set of VNFs with type 𝑏
𝑈 The set of users
𝑢,𝑏 The set of assigned VNFs with type 𝑏 of user 𝑢
𝛤𝑢,𝑏 The set of requests of user 𝑢 for VNFs with type 𝑏

𝑘 The maximum number of VNFs with the same type each user can
access

𝑝 The maximum number of users each VNF can serve
𝑃 (𝑛) The processing capacity of edge cloud 𝑛
𝑝(𝑓 ) The processing capacity of VNF 𝑓
𝑐(𝑓 ) The placement cost of VNF 𝑓
𝑡(𝑢) The estimated traffic amount of user 𝑢
𝑡(𝛾) The traffic amount of request 𝛾

𝑥𝑛𝑓 Whether edge cloud 𝑛 places VNF 𝑓 or not
𝑦𝑛𝑢,𝑓 Whether VNF 𝑓 placed in edge cloud 𝑛 is assigned to user 𝑢 or not
𝑟𝑛𝑢,𝑓 The traffic proportion of user 𝑢 served by VNF 𝑓 placed in edge

cloud 𝑛
𝑧𝑓𝑢,𝛾 Whether request 𝛾 of user 𝑢 is scheduled to VNF 𝑓 or not

3.1. Problem formulation

Let 𝑥𝑛𝑓 ∈ {0, 1} denote whether the edge cloud 𝑛 places the VNF 𝑓 or
not. For each user 𝑢, let 𝑦𝑛𝑢,𝑓 ∈ {0, 1} denote whether the VNF 𝑓 placed
in edge cloud 𝑛 is assigned to the user 𝑢 or not. We use 𝑟𝑛𝑢,𝑓 ∈ [0, 1]
to denote the traffic proportion of user 𝑢 served by VNF 𝑓 placed in
edge cloud 𝑛. The notations are summaried in Table Table 1. A robust
VNF placement and assignment scheme should satisfy the following
constraints.

1. Placement Constraint: User 𝑢 can obtain the service of VNF 𝑓 from
edge cloud 𝑛 if and only if VNF 𝑓 has been placed in edge cloud
𝑛. That is, 𝑦𝑛 ≤ 𝑥𝑛 ,∀𝑢 ∈ 𝑈, 𝑓 ∈  , 𝑛 ∈ 𝑁 .
𝑢,𝑓 𝑓



Computer Networks 233 (2023) 109882J. Fang et al.
2. Service Constraint: The traffic of user 𝑢 can be processed by VNF
𝑓 if and only if it is assigned to user 𝑢, that is 𝑟𝑛𝑢,𝑓 ≤ 𝑦𝑛𝑢,𝑓 ,∀𝑢 ∈
𝑈, 𝑓 ∈  , 𝑛 ∈ 𝑁 .

3. Access Constraint: Similar to works [15,32–34], this paper focuses
on allowing users to access services on edge computing nodes
that are not within their one-hop communication range to pro-
vide real-time services. We use 𝜙𝑢 ⊆ 𝑁 to denote the unavailable
edge cloud set of user 𝑢. That means, ∑𝑛∈𝜙𝑢 𝑦

𝑛
𝑢,𝑓 = 0,∀𝑓 ∈  , 𝑢 ∈

𝑈 .
4. Instance Constraint: Each VNF is an instance (e.g., VM), and can

only be placed in at most one edge cloud. i.e., ∑𝑛∈𝑁 𝑥𝑛𝑓 ≤ 1,∀𝑓 ∈
 .

5. User Constraint: To reduce the impact of malicious users on the
network, each user’s requests with the same service requirement
will be processed by 𝑘 VNFs at most. That is, ∑𝑛∈𝑁

∑

𝑓∈𝑏
𝑦𝑛𝑢,𝑓 ≤

𝑘,∀𝑢 ∈ 𝑈, 𝑏 ∈ 𝐵.
6. VNF Constraint: To reduce the impact of the VNF failure on the

network, each VNF can serve no more than 𝑝 users. That means,
∑

𝑛∈𝑁
∑

𝑢∈𝑈 𝑦𝑛𝑢,𝑓 ≤ 𝑝,∀𝑓 ∈  .
7. Traffic Constraint: All traffic of each user must be served, which

means ∑

𝑛∈𝑁
∑

𝑓∈ 𝑟𝑛𝑢,𝑓 = 1,∀𝑢 ∈ 𝑈 .
8. Capacity Constraints: All edge clouds and VNFs have capacity

constraints. On one hand, the placement of the VNF needs to
occupy the physical resources of the corresponding edge cloud.
Thus, we must satisfy the physical resource constraint of each
edge cloud, i.e., ∑𝑓∈ 𝑥𝑛𝑓 ⋅ 𝑝(𝑓 ) ≤ 𝑃 (𝑛),∀𝑛 ∈ 𝑁 . On the other
hand, to satisfy the VNF processing constraint, each VNF can
only serve limited user traffic, which is ∑

𝑛∈𝑁
∑

𝑢∈𝑈 𝑟𝑛𝑢,𝑓 ⋅ 𝑡(𝑢) ≤
𝑝(𝑓 ),∀𝑓 ∈  .

With the above constraints, the RVPA problem can be formulated
as follows.

min
∑

𝑛∈𝑁

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑐(𝑓 )

𝑆.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑦𝑛𝑢,𝑓 ≤ 𝑥𝑛𝑓 , ∀𝑛 ∈ 𝑁, 𝑓 ∈  , 𝑢 ∈ 𝑈

𝑟𝑛𝑢,𝑓 ≤ 𝑦𝑛𝑢,𝑓 , ∀𝑛 ∈ 𝑁, 𝑓 ∈  , 𝑢 ∈ 𝑈
∑

𝑛∈𝜙𝑢

𝑦𝑛𝑢,𝑓 = 0, ∀𝑓 ∈  , 𝑢 ∈ 𝑈

∑

𝑛∈𝑁
𝑥𝑛𝑓 ≤ 1, ∀𝑓 ∈ 

∑

𝑛∈𝑁

∑

𝑓∈𝑏

𝑦𝑛𝑢,𝑓 ≤ 𝑘, ∀𝑢 ∈ 𝑈, 𝑏 ∈ 𝐵

∑

𝑛∈𝑁

∑

𝑢∈𝑈
𝑦𝑛𝑢,𝑓 ≤ 𝑝, ∀𝑓 ∈ 

∑

𝑛∈𝑁

∑

𝑓∈
𝑟𝑛𝑢,𝑓 = 1, ∀𝑢 ∈ 𝑈

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑝(𝑓 ) ≤ 𝑃 (𝑛), ∀𝑛 ∈ 𝑁

∑

𝑛∈𝑁

∑

𝑢∈𝑈
𝑟𝑛𝑢,𝑓 ⋅ 𝑡(𝑢) ≤ 𝑝(𝑓 ), ∀𝑓 ∈ 

𝑥𝑛𝑓 , 𝑦
𝑛
𝑢,𝑓 ∈ {0, 1}, ∀𝑛 ∈ 𝑁, 𝑓 ∈  , 𝑢 ∈ 𝑈

𝑟𝑛𝑢,𝑓 ∈ [0, 1] , ∀𝑛 ∈ 𝑁, 𝑓 ∈  , 𝑢 ∈ 𝑈

(1)

The first set of inequalities means that each user can obtain the
service of VNF from the edge cloud only if the corresponding VNF has
been placed in the edge cloud. The second set of inequalities indicates
that a user’s traffic can be processed by a VNF only if it is assigned
to the corresponding user. The third set of equations represents that
each user can only access the services via the edge clouds close to him.
The fourth set of inequalities means that each VNF can be placed in
at most one edge cloud. The fifth and sixth sets of inequalities denote
4

the user and VNF constraints as mentioned in Section 2.3, respectively.
The seventh set of equations denotes that each user’s traffic must
be served. The eighth and ninth sets of inequalities represent the
capacity constraints of edge clouds and VNFs, respectively. Our goal
is to minimize the VNF placement cost.

3.2. Problem complexity analysis

The RVPA problem contains VNF placement and VNF assignment.
We first consider the part of VNF placement and compare it with the
generalized assignment problem [35].

Definition 1 (Generalized Assignment Problem). Given 𝐽 jobs and 𝑀
capacity constrained machines. Each job has a cost when assigned to a
machine. We need to assign each job to one machine, while total costs
are minimized.

min
∑

𝑛∈𝑁

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑐(𝑓 )

𝑆.𝑡.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑛∈𝑁
𝑥𝑛𝑓 ≤ 1, ∀𝑓 ∈ 

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑝(𝑓 ) ≤ 𝑃 (𝑛), ∀𝑛 ∈ 𝑁

𝑥𝑛𝑓 ,∈ {0, 1}, ∀𝑛 ∈ 𝑁, 𝑓 ∈ 

(2)

Compared with GAP. By removing the constraints of the VNF assign-
ment of RVPA, we can obtain Eq. (2). We can regard VNF instances
and edge clouds as jobs and machines. The processing capacity of
edge clouds is like the resource constraint of machines, and the VNF
placement cost is like the assignment cost of jobs. Therefore, we can
say that the generalized assignment problem is a special case of the
RVPA problem.

We then add both robust constraints of the VNF assignment (i.e.,
the user constraint and VNF constraint) to Eq. (2), and show how this
problem includes exceptional cases such as k-splittable routing [36] and
data distribution [37] problems, demonstrating the complexity of RVPA
problem.

min
∑

𝑛∈𝑁

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑐(𝑓 )

𝑆.𝑡.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑦𝑛𝑢,𝑓 ≤ 𝑥𝑛𝑓 , ∀𝑛 ∈ 𝑁, 𝑓 ∈  , 𝑢 ∈ 𝑈
∑

𝑛∈𝑁
𝑥𝑛𝑓 ≤ 1, ∀𝑓 ∈ 

∑

𝑛∈𝑁

∑

𝑓∈𝑏

𝑦𝑛𝑢,𝑓 ≤ 𝑘, ∀𝑢 ∈ 𝑈, 𝑏 ∈ 𝐵
∑

𝑛∈𝑁

∑

𝑢∈𝑈
𝑦𝑛𝑢,𝑓 ≤ 𝑝, ∀𝑓 ∈ 

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑝(𝑓 ) ≤ 𝑃 (𝑛), ∀𝑛 ∈ 𝑁

𝑥𝑛𝑓 , 𝑦
𝑛
𝑢,𝑓 ∈ {0, 1}, ∀𝑛 ∈ 𝑁, 𝑓 ∈  , 𝑢 ∈ 𝑈

(3)

Definition 2 (K-Splittable Routing (KSR) Problem). Given a network with
a set of flows 𝑅 = {𝑟1, 𝑟2,… , 𝑟

|𝑅|}, each of which has a traffic size
𝑓 (𝑟). For each flow 𝑟, we need to determine a set of feasible paths
𝑃 . Specifically, we will choose at most 𝑘 paths for each path set 𝑃 to
minimize the maximum load factor of all links.

Compared with KSR problem. According to [36], there exists a
complex rounding-based algorithm with the approximation factor of
𝑂(log𝑁), where 𝑁 is the number of links in the network. We can
regard each user as a flow with traffic size 𝑡(𝑢), and choose at most
𝑘 paths (placed VNFs) for each user. If we ignore the VNF constraint,

the problem can be seen as the KSR problem.



Computer Networks 233 (2023) 109882J. Fang et al.

a
t
m

C
r
c
m
r

s
w

m
a
p

3

s
𝑂
c
i
p
R
s
o
b

W
o
K
V
t
V
w
v
e

1

a
V
d

𝑘

g

L
0

P
B

⎧

⎪

⎨

⎪

⎩

Definition 3 (Data Distribution (DD) Problem). Given a set of server
𝑀 = {𝑚1, 𝑚2,… , 𝑚

|𝑀|

}, each with a memory size 𝑆(𝑚) and a set of
document 𝑁 = {𝑛1, 𝑛2,… , 𝑛

|𝑁|

}, each with a document size 𝑠(𝑛) and
n access cost 𝑐(𝑛). We need to select servers for each document under
he server memory size constraint with the objective of minimizing the
aximum access cost among all servers.

ompared with DD problem. According to [37], there exists an algo-
ithm achieving the optimal solution while exceeding both the access
ost and memory size by at most a factor 2 ⋅ (1 + 1

𝜙 ), where 𝜙 is the
aximum number of documents saved by a server. In this case, we can

egard each user as a document with one unit size and access cost 𝑡(𝑢)
and each VNF as a server that can only serve 𝑝 documents. By ignoring
the user constraint, we can say that the DD problem is a special case of
the RVPA problem.

Theorem 1. The RVPA problem is NP-hard.

Proof. Since the special cases of the RVPA problem can be seen as
ome well-known NP-hard problems, our RVPA problem is NP-hard as
ell. □

The preceding analysis shows that the RVPA problem is much
ore difficult than KSP and DD. Thus, It is far from trivial to design

n algorithm with bounded approximation factors to solve the RVPA
roblem.

.3. Algorithm design

By using the traditional randomized rounding algorithm [38] to
olve RVPA, we can achieve approximation factors of (𝑂(log | |),
(log | |), 𝑂(log |𝑁|), 𝑂(log | |)), which represent the maximum ex-
eeded factors of user constraint, VNF constraint, edge cloud capac-
ty constraints, and VNF capacity constraints, respectively. To im-
rove the approximation performance, we present a Knapsack-based
ounding for VNF Placement and Assignment (KVPA) algorithm to
olve RVPA in polynomial time. It can achieve approximation factors
f (1, 𝑂(log | |), 𝑂(log |𝑁|), 𝑂(log | |)). Under proper assumptions, the
ounds can be tightened to (1, 4, 2, 2). It means KVPA can strictly satisfy

the user constraint and exceed the VNF constraint, edge cloud capacity
constraints and VNF capacity constraints at most by a factor of 4, 2
and 2, respectively, in most practical scenarios, which will be proved
in Section 3.4.

Our algorithm consists of three steps. The first step relaxes Eq. (1) to
a linear program by replacing {𝑥𝑛𝑓 }, {𝑦

𝑛
𝑢,𝑓 } with their fractional versions.

e can solve it with a linear program solver (e.g., PULP [39]) and the
ptimal solutions are denoted as {𝑥𝑛𝑓 }, {𝑦𝑛𝑢,𝑓 } and {�̃�𝑛𝑢,𝑓 }. After that,
VPA places VNF in edge clouds based on the optimal solutions. Each
NF 𝑓 is placed in edge cloud 𝑛 with probability 𝑥𝑛𝑓 . Let 𝑛𝑓 represent

he edge cloud where VNF 𝑓 is placed. In the third step, KVPA assigns
NFs to users. For each user 𝑢, we first calculate 𝑘(𝑢, 𝑏) =

⌊

∑

𝑓∈𝑏
𝑦
𝑛𝑓
𝑢,𝑓

⌋

,
hich is the required number of VNFs with type 𝑏. Then KVPA puts
ariables 𝑦

𝑛𝑓
𝑢,𝑓 (∀𝑓 ∈ 𝑏) into 𝑘(𝑢, 𝑏) knapsacks with min–max sum. For

ach knapsack 𝑎, VNF 𝑓 will be assigned to user 𝑢 with probability
𝑦
𝑛𝑓
𝑢,𝑓

𝑎⋅𝑥𝑛
𝑓
𝑓

, where 𝑎 is the sum of 𝑦
𝑛𝑓
𝑢,𝑓 in knapsack 𝑎. After KVPA ends,

VNFs are placed in edge clouds and assigned to users. The KVPA
algorithm is summarized in Alg. 1.

Note that, after we put variables into knapsacks with the objective
of min–max sum, 𝑎 usually equals approximately 1. According to the
fourth and fifth constraints in Eq. (1), we can see that 𝑦𝑛𝑓𝑢,𝑓 is generally

much smaller than 𝑥𝑛𝑓𝑓 . Thus, we believe
𝑦
𝑛𝑓
𝑢,𝑓
𝑛𝑓

≤ 1.
5

𝑎⋅𝑥𝑓
Algorithm 1 KVPA: Knapsack-based Rounding for VNF Placement and
Assignment
1: Step 1: Solving the Relaxed Problem
2: Construct a 𝐿𝑃 by replacing with 𝑥𝑛𝑓 , 𝑦

𝑛
𝑢,𝑓 ∈ [0, 1].

3: Obtain the optimal solutions {𝑥𝑛𝑓 }, {𝑦
𝑛
𝑢,𝑓 } and {�̃�𝑛𝑢,𝑓 }.

4: Step 2: VNF Placement
5: for each VNF 𝑓 ∈  do
6: Choose edge cloud 𝑛 to place VNF 𝑓 with probability 𝑥𝑛𝑓
7: Let 𝑛𝑓 denote the edge cloud which places VNF 𝑓
8: Step 3: VNF Assignment
9: for each user 𝑢 ∈ 𝑈 do
0: for each VNF type 𝑏 ∈ 𝐵 do

11: Let 𝑘(𝑢, 𝑏) =
⌊

∑

𝑓∈𝑏
𝑦
𝑛𝑓
𝑢,𝑓

⌋

12: Put 𝑦𝑛𝑓𝑢,𝑓 where 𝑓 ∈ 𝑏 into 𝑘(𝑢, 𝑏) knapsacks with min–max sum

13: for each knapsack 𝑎 do
14: Let A denote the variables in knapsack 𝑎
15: Calculate 𝑎 =

∑

𝑦
𝑛𝑓
𝑢,𝑓∈A

𝑦
𝑛𝑓
𝑢,𝑓

16: Choose 𝑓 for 𝑦𝑛𝑓𝑢,𝑓 ∈ A with probability
𝑦
𝑛𝑓
𝑢,𝑓

𝑎⋅𝑥
𝑛𝑓
𝑓

and set 𝑦𝑛𝑓𝑢,𝑓 = 1

for chosen VNF 𝑓 .
17: Set the traffic proportion of user 𝑢 processed by VNF 𝑓 to

�̂�
𝑛𝑓
𝑢,𝑓 =

�̃�
𝑛𝑓
𝑢,𝑓 ⋅𝑎⋅𝑥

𝑛𝑓
𝑓

𝑦
𝑛𝑓
𝑢,𝑓

18: Assign the VNFs with 𝑦
𝑛𝑓
𝑢,𝑓 = 1 for user 𝑢

3.4. Performance analysis

Theorem 2. KVPA can strictly guarantee that each user 𝑢 ∈ 𝑈 will be
assigned at most 𝑘 VNFs, i.e., we can strictly guarantee the user constraint.

Proof. Each user 𝑢 ∈ 𝑈 is assigned with VNFs from 𝑘(𝑢, 𝑏) knapsacks,
nd only one VNF is selected in each knapsack. Thus, there are 𝑘(𝑢, 𝑏)
NFs selected in total. According to user constraint in Eq. (1) and the
efinition of 𝑘(𝑢, 𝑏), we have:

(𝑢, 𝑏) =

⌊

∑

𝑓∈𝑏

𝑦
𝑛𝑓
𝑢,𝑓

⌋

≤
∑

𝑛∈𝑁

∑

𝑓∈𝑏

𝑦𝑛𝑢,𝑓 ≤ 𝑘 (4)

It shows that 𝑘(𝑢, 𝑏) ≤ 𝑘, i.e., the user constraint is strictly
uaranteed. □

emma 3. For each knapsack 𝑎, the lower bound of 𝑎 is greater than
.5.

roof. We first prove that the lower bound of 𝑎 is greater than 0.5.
y the definition of 𝑘(𝑢, 𝑏), we have:
∑

𝑓∈𝑏

𝑦
𝑛𝑓
𝑢,𝑓 = 𝑘(𝑢, 𝑏) + 𝜀,∀𝑢 ∈ 𝑈, 𝑏 ∈ 𝐵 (5)

Then, we define two sets as follows:

1 =
{

𝑦
𝑛𝑓
𝑢,𝑓 |0.5 < 𝑦

𝑛𝑓
𝑢,𝑓 < 1, 𝑓 ∈ 𝑏

}

2 =
{

𝑦
𝑛𝑓
𝑢,𝑓 |0 < 𝑦

𝑛𝑓
𝑢,𝑓 < 0.5, 𝑓 ∈ 𝑏

} (6)

Supposing that we select two variables denoted as 𝑦𝑛1𝑢,1 and 𝑦𝑛2𝑢,2 from
2 randomly. The value of 𝑦𝑛3𝑢,3 = 𝑦𝑛1𝑢,1 + 𝑦𝑛2𝑢,2 is either greater than 0.5 or
less than 0.5. If 𝑦𝑛3𝑢,3 > 0.5, then 1 = 1+𝑦𝑛3𝑢,3 and 2 = 2−

{

𝑦𝑛1𝑢,1, 𝑦
𝑛2
𝑢,2

}

.

Otherwise, 2 = 2 −
{

𝑦𝑛1𝑢,1, 𝑦
𝑛2
𝑢,2

}

+𝑦𝑛3𝑢,3. We repeat the above operations
until |2| ≤ 1. Supposing that there is one variable in 2, there are at

most 𝑘(𝑢, 𝑏) − 1 variables in 1. According to the definition of 1, the



Computer Networks 233 (2023) 109882J. Fang et al.

…

𝑒

T
s

i

𝑓

𝑢

h

t
V

E

⇒

t

P

h
b
e

E

𝜚

h

value of variables in 1 is all less than 1. Thus, we have:
∑

𝑦
𝑛𝑓
𝑢,𝑓∈1

𝑦
𝑛𝑓
𝑢,𝑓 < 𝑘(𝑢, 𝑏) − 1 (7)

∑

𝑦
𝑛𝑓
𝑢,𝑓∈2

𝑦
𝑛𝑓
𝑢,𝑓 < 0.5 (8)

Combining Eqs. (7) and (8), we have:
∑

𝑓∈𝑏

𝑦
𝑛𝑓
𝑢,𝑓 < 𝑘(𝑢, 𝑏) − 0.5 (9)

However, Eq. (9) contradicts Eq. (5). Thus, at least 𝑘(𝑢, 𝑏) variables
are in 1. Since we put variables to knapsacks with min–max sum, the
sum 𝑎 of knapsack 𝑎 must be greater than 0.5. □

In order to facilitate the description of approximation analysis, we
now give one famous lemma for analysis.

Lemma 4 (Chernoff Bound [40]). Given 𝑛 independent variables: 𝑦1, 𝑦2,
, 𝑦𝑛,∀𝑦𝑖 ∈ [0, 1]. Let 𝜏 = E

[
∑𝑛

𝑖=1 𝑦𝑖
]

. Then, Pr
[
∑𝑛

𝑖=1 𝑦𝑖 ≥ (1 + 𝜚)𝜏
]

≤
−𝜚2𝜏
2+𝜚 , where 𝜚 is an arbitrary positive value.

heorem 5. KVPA guarantees that the number of users each VNF can
erve will not exceed 𝑝 by a factor of 𝑂(log | |), where | | is the number
of VNFs in the network. Under the proper assumption, the bound can be
tightened to 4.

Proof. VNF 𝑓 ∈ 𝑏 can provide service to user 𝑢 ∈ 𝑈 if and only if
t is placed in an edge cloud and assigned to user 𝑢. Since each VNF

∈ 𝑏 is placed in edge cloud 𝑛𝑓 with probability
𝑥
𝑛𝑓
𝑓
𝑧𝑎

. Each user

∈ 𝑈 will be assigned with VNF 𝑓 with probability
𝑦
𝑛𝑓
𝑢,𝑓

𝑎⋅𝑥
𝑛𝑓
𝑓

. Thus we

ave E
[

𝑦
𝑛𝑓
𝑢,𝑓

]

=
𝑦
𝑛𝑓
𝑢,𝑓
𝑎

. According to Lemma 3, we have:

E
[

𝑦
𝑛𝑓
𝑢,𝑓

]

=
𝑦
𝑛𝑓
𝑢,𝑓

𝑎
≤ 2 ⋅ 𝑦

𝑛𝑓
𝑢,𝑓 (10)

We define a constant value 𝜗 = 𝑝, which means the most number of
users that each VNF can serve. According to the algorithm, each VNF
𝑓 will be assigned to user 𝑢 (𝑦

𝑛𝑓
𝑢,𝑓 = 1), or not (𝑦

𝑛𝑓
𝑢,𝑓 = 0), so we define

𝑤
𝑛𝑓
𝑢,𝑓 ∈ {0, 1}, where 𝑤

𝑛𝑓
𝑢,𝑓 = 1 with probability of

𝑦
𝑛𝑓
𝑢,𝑓
𝑎

. It is obviously
hat variables 𝑤𝑛𝑓

𝑢,𝑓 are independent. The expected number of users that
NF 𝑓 provide service to satisfies:
[

∑

𝑢∈𝑈
𝑤

𝑛𝑓
𝑢,𝑓

]

=
∑

𝑢∈𝑈

𝑦
𝑛𝑓
𝑢,𝑓

𝑎
≤ 2 ⋅

∑

𝑢∈𝑈
𝑦
𝑛𝑓
𝑢,𝑓 ≤ 2 ⋅ 𝑝 (11)

Combining Eq. (11) and the definition of 𝜗, we have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤
𝑛𝑓
𝑢,𝑓 ⋅𝜗

2⋅𝑝 ∈ [0, 1]

E
⎡

⎢

⎢

⎣

∑

𝑢∈𝑈

𝑤
𝑛𝑓
𝑢,𝑓 ⋅ 𝜗

2 ⋅ 𝑝

⎤

⎥

⎥

⎦

≤ 𝜗
(12)

By applying Lemma 4, we have:

Pr
⎡

⎢

⎢

⎣

∑

𝑢∈𝑈

𝑤
𝑛𝑓
𝑢,𝑓 ⋅ 𝜗

2 ⋅ 𝑝
≥ (1 + 𝜚) ⋅ 𝜗

⎤

⎥

⎥

⎦

≤ 𝑒
−𝜚2𝜗
2+𝜚

⇒ Pr
⎡

⎢

⎢

⎣

∑

𝑢∈𝑈

𝑤
𝑛𝑓
𝑢,𝑓

2 ⋅ 𝑝
≥ (1 + 𝜚)

⎤

⎥

⎥

⎦

≤ 𝑒
−𝜚2𝜗
2+𝜚 (13)

where 𝜚 is an arbitrary positive value.
Now, we assume that:

Pr
⎡

⎢

⎢

∑
𝑤

𝑛𝑓
𝑢,𝑓

2 ⋅ 𝑝
≥ (1 + 𝜚)

⎤

⎥

⎥

≤ 𝑒
−𝜚2𝜗
2+𝜚 ≤ 1

| |
(14)
6

⎣

𝑢∈𝑈
⎦

When the network grows, 1
| | approaches to zero. By solving Eq.

(14), we have:

𝜚 ≥
log | | +

√

log2 | | + 8𝜗 log | |
2𝜗

, (| | ≥ 2)

⇒ 𝜚 ≥
log | |

𝜗
+ 2, (| | ≥ 2) (15)

In practice, there exist thousands of VNFs in the edge cloud, accord-
ing to the definition of 𝜗, we can assume that 𝜗 ≥ 3 ⋅ log | |. Under this
assumption, we have:

𝜚 ≥
log | | +

√

log2 | | + 8𝜗 log | |
2𝜗

𝜚 ≥
log | | +

√

(2𝜗 − log | |)2

2𝜗
⇒ 𝜚 ≥ 1 (16)

Thus, the approximate factor of VNF constraint is 2 ⋅ (𝜚 + 1) =
2⋅log| |

𝜗 +6 = 𝑂(log | |). Under the proper assumption (i.e., 𝛼 ≥ 3⋅log | |),
the bound can be tightened to 2 ⋅ (𝜚 + 1) = 4. □

Theorem 6. KVPA will not exceed the edge cloud capacity constraint
and VNF capacity constraint by approximation factors of 𝑂(log |𝑁|) and
𝑂(log | |), respectively. Under proper assumptions, the bound can all be
ightened to 2.

roof. Since we place VNF 𝑓 in edge cloud 𝑛 with probability of
𝑥𝑛𝑓
𝑧𝑎

, we

ave E
[

𝑥𝑛𝑓
]

=
𝑥𝑛𝑓
𝑧𝑎

. We use 𝜑𝑛
𝑓 to denote the process resource required

y VNF 𝑓 in edge cloud 𝑛. So the expected process resource needed by
dge cloud 𝑛 is
[

∑

𝑓∈
𝜑𝑛
𝑓

]

= E

[

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑝(𝑓 )

]

=
∑

𝑓∈
E
[

𝑥𝑛𝑓 ⋅ 𝑝(𝑓 )
]

=
∑

𝑓∈

𝑥𝑛𝑓 ⋅ 𝑝(𝑓 )

𝑧𝑎
≤ 2 ⋅ 𝑃 (𝑛)

(17)

We define a constant value 𝜈 as follows:

𝜈 = min{
2 ⋅ 𝑃min

𝑛
𝑝(𝑓 )

, 𝑓 ∈ } (18)

similar to Theorem 6, 𝑃min
𝑛 denotes the minimum capacity among edge

cloud 𝑛 ∈ 𝑁 .
Combining the definition of 𝜈, we have:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜑𝑛
𝑓 ⋅𝜈

2⋅𝑃 (𝑛) ∈ [0, 1]

E

[

∑

𝑓∈

𝜑𝑛
𝑓 ⋅ 𝜈

2 ⋅ 𝑃 (𝑛)

]

≤ 𝜈
(19)

Similar to the proof of Theorem 5, by using Lemma 4, we have:

≥ 2 ⋅
log |𝑁|

𝜈
+ 2, |𝑁| ≥ 2 (20)

where |𝑁| is the number of edge clouds in the network.
As a result, the approximate factor for edge cloud capacity constraint

is 𝜚 + 1 = log|𝑁|

𝜈 + 3 = 𝑂(log |𝑁|).

For each VNF, we compute �̂�
𝑛𝑓
𝑢,𝑓 =

�̃�
𝑛𝑓
𝑢,𝑓 ⋅𝑎

𝑦
𝑛𝑓
𝑢,𝑓

with probability of
𝑦
𝑛𝑓
𝑢,𝑓
𝑎

, we

ave E
[

�̂�𝑛𝑢,𝑓
]

= �̃�𝑛𝑢,𝑓 .
We use 𝜙𝑓

𝑢,𝑏 to denote the traffic amount of user 𝑢 ∈ 𝑈 handled by
VNF 𝑓 ∈ 𝑏. The expectation of traffic load of VNF 𝑓 is:

E

[

∑

𝑢∈𝑈
𝜙𝑛
𝑢,𝑓

]

=
∑

𝑢∈𝑈
E
[

𝜙𝑛
𝑢,𝑓

]

=
∑

�̃�𝑛𝑢,𝑓 ⋅ 𝑡(𝑢, 𝑏) ≤ 𝑝(𝑓 )
(21)
𝑢∈𝑈



Computer Networks 233 (2023) 109882J. Fang et al.

𝑝

T
f

V

4

L
E

P

T

The equation above shows that our algorithm can guarantee that the
expectation of traffic load on VNF 𝑓 will not exceed its process capacity
(𝑓 ). We define a constant value 𝜈 as follows:

𝜈 = min{
𝑝min
𝑓

𝑡(𝑢, 𝑏)
, 𝑢 ∈ 𝑈} (22)

where 𝑝min
𝑓 denotes the minimum capacity among VNF 𝑓 ∈ 𝑏.

Similar to the proof of Theorem 5, by using Lemma 4, we have:

𝜚 ≥
log | |

𝜈
+ 2, | | ≥ 2 (23)

where | | is the number of VNF in the network.
Thus, we can conclude that the approximate factor for VNF capacity

constraint is 𝜚 + 1 = log| |
𝜈 + 3 = 𝑂(log | |). □

heorem 7. After rounding, the VNF placement cost will not exceed the
ractional solution by a factor of 𝑂(log | |). Under the proper assumption,
we can tighten the bound to 2.

Proof. According to Alg. 1, we place VNF 𝑓 ∈  in edge cloud 𝑛 ∈ 𝑁
with probability of 𝑥𝑛𝑓 , thus we have E

[

𝑥𝑛𝑓
]

= 𝑥𝑛𝑓 . The expected VNF
placement cost can be calculated as:

E

[

∑

𝑛∈𝑁

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑐(𝑓 )

]

=
∑

𝑛∈𝑁

∑

𝑓∈
𝑥𝑛𝑓 ⋅ 𝑐(𝑓 )

Since the following proof is similar to Theorem 5, we omit the
detailed proof here. □

4. Online request scheduling

In this section, we first give the formulation of the Online Re-
quest Scheduling (ORS) problem. Then we propose an online algorithm
based on primal–dual method. At last, we analyze its approxima-
tion performance and present the competitive ratio of the proposed
algorithm.

4.1. Problem formulation

Considering VNFs with type 𝑏, we use 𝑢,𝑏 ⊆ 𝑏 to represent the
assigned VNF set of user 𝑢, which is determined in Section 3. Let
𝛤 𝑏
𝑢 = {𝛾𝑏𝑢,1, 𝛾

𝑏
𝑢,2,… , 𝛾𝑏𝑢,𝑑} denote the set of requests generated by user

𝑢 that need to be served by VNFs of type 𝑏 and 𝑡 (𝛾) represent the
traffic amount associated with request 𝛾. We use variable 𝑧𝑓𝑢,𝛾 ∈ {0, 1}
to denote whether the request 𝛾 of user 𝑢 is scheduled to VNF 𝑓 or not.
With these notations, we formulate ORS as follows:

max
∑

𝑢∈𝑈

∑

𝛾∈𝛤 𝑏
𝑢

∑

𝑓∈𝑏

𝐼 ⋅ 𝑧𝑓𝑢,𝛾 ⋅ 𝑡(𝛾)

𝑆.𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

𝑓∈𝑏

𝐼𝑧𝑓𝑢,𝛾 ≤ 1, ∀𝑢 ∈ 𝑈, 𝛾 ∈ 𝛤 𝑏
𝑢

∑

𝑢∈𝑈

∑

𝛾∈𝛤 𝑏
𝑢

𝐼𝑧𝑓𝑢,𝛾 𝑡(𝛾) ≤ 𝑝(𝑓 ), ∀𝑓 ∈ 𝑏

𝑧𝑓𝑢,𝛾 ∈ {0, 1} , ∀𝑢 ∈ 𝑈, 𝛾 ∈ 𝛤 𝑏
𝑢 , 𝑓 ∈ 𝑏

(24)

where 𝐼 ∈ {0, 1} is the abbreviation of 𝐼(𝑓, 𝑢).
𝐼 is a constant indicating that whether VNF 𝑓 is assigned to user

𝑢 or not. The first set of inequalities denotes that at most one VNF is
selected for each request. The second set of inequalities indicates that
the workload of VNF 𝑓 should not exceed its process capacity. Our goal
7

is to maximize the network throughput. t
Algorithm 2 PDRS: Primal–Dual based Request Scheduling
1: Step 1: Variable Initialization
2: Initialize all the dual variables
3: 𝛼𝑢,𝛾 ← 0,∀𝑢 ∈ 𝑈, 𝛾 ∈ 𝛤 𝑏

𝑢
4: 𝛽𝑓 ← 0,∀𝑓 ∈ 𝑏

5: Step 2: Online Request Scheduling
6: for each arrival request 𝛾 of user 𝑢 do
7: Calculate the cost of all candidate VNFs in 𝑢,𝑏

8: 𝑓 ∗ ← argmin𝐾𝑓

9: if 𝐾𝑓∗ < 1 then
10: Schedule request 𝛾 to VNF 𝑓 ∗

11: Update dual variables according to Eq. (27)
12: else
13: Reject request 𝛾 and set 𝛼𝑢,𝛾 ← 0

4.2. Algorithm design

To solve the ORS problem, we design an online algorithm called
Primal–Dual based Request Scheduling (PDRS). We first construct the
dual problem for the linear relaxation of Eq. (24). Let 𝛼𝑢,𝛾 , 𝛽𝑓 represent
the dual variables of the first and second sets of inequalities, respec-
tively. Note that all dual variables are non-negative. The dual version
of the ORS problem can be formulated as:

min
∑

𝑢∈𝑈

∑

𝛾∈𝛤 𝑏
𝑢

𝛼𝑢,𝛾 +
∑

𝑓∈𝑏

𝛽𝑓 ⋅ 𝑝(𝑓 )

𝑆.𝑡.

⎧

⎪

⎨

⎪

⎩

𝐼𝛼𝑢,𝛾 + 𝐼𝛽𝑓 𝑡(𝛾) ≥ 𝐼𝑡(𝛾), ∀𝑢 ∈ 𝑈, 𝛾 ∈ 𝛤 𝑏
𝑢 , 𝑓 ∈ 𝑏

𝛼𝑢,𝛾 , 𝛽𝑓 ≥ 0, ∀𝑢 ∈ 𝑈, 𝛾 ∈ 𝛤 𝑏
𝑢 , 𝑓 ∈ 𝑏

(25)

We can rewrite the first set of inequalities of Eq. (25) as:

𝐼 ⋅ 𝛼𝑢,𝛾 ≥ 𝐼 ⋅ 𝑡(𝛾)(1 − 𝛽𝑓 ),∀𝑢 ∈ 𝑈, 𝛾 ∈ 𝛤 𝑏
𝑢 , 𝑓 ∈ 𝑏 (26)

For each arrival request of user 𝑢, the algorithm needs to select a
VNF 𝑓 ∈ 𝑢,𝑏 to handle it. In this way, the selected VNF 𝑓 satisfies
𝐼 = 1. When a request arrives, the algorithm calculates the cost of each
candidate VNF 𝑓 ∈ 𝑢,𝑏, which is defined as 𝐾𝑓 = 𝛽𝑓 . PDRS selects the

NF 𝑓 ∗ with the lowest cost, denoted by 𝐾𝑓∗ , for the arrival request.
Since 𝐼 = 1, if 𝐾𝑓∗ > 1, then 1 − 𝐾𝑓∗ < 0 violating the second set
of constraints in Eq. (25). Thus, the arrival request will be rejected
and the dual variable 𝛽𝑓 will be set as 0 when 𝐾𝑓∗ ≥ 1. Otherwise,
the arrival request will be accepted and scheduled to VNF 𝑓 ∗. The
algorithm updates the dual variables as follows:

⎧

⎪

⎨

⎪

⎩

𝛼𝑢,𝛾 = 𝑡(𝛾)(1 −𝐾𝑓∗ )
𝛽𝑓 = 𝛽𝑓 (1 +

𝑡(𝛾)
𝑝(𝑓 ) ) +

𝑡(𝛾)
1
𝜖 ⋅𝑝(𝑓 )

(27)

The PDRS algorithm is described in Alg. 2.

.3. Performance analysis

emma 8. When PDRS ends, the constraints of the dual problem, i.e.,
q. (25) will not be violated.

roof. We first consider the positivity constraint (i.e., the second set of
inequalities) of Eq. (25). In the beginning, we set all dual variables as
0, which satisfies the positivity constraint. For variables 𝛽𝑓 , they will
keep increasing. For variables 𝛼𝑢,𝛾 , according to Line 9 of Alg. 2, they
will be updated only if 𝐾𝑓∗ < 1, which means 𝛼𝑢,𝛾 = 𝑡(𝛾)(1 − 𝐾𝑓∗ ) > 0.

hus, all dual variables will not violate the positivity constraint after
he algorithm ends. Then, let us consider the first set of constraints in



Computer Networks 233 (2023) 109882J. Fang et al.

l
p
s
u

𝛼

T
E
v
d
a
w

d

D
l
c

o

L

𝛽

w

P
1
a
f
i
A
c
b
b

𝛽

𝛽

w
u
𝛽
o

Eq. (25). For each arrival request, we will select the VNF 𝑓 with the
owest cost 𝐾𝑓∗ . If 𝐾𝑓∗ ≥ 1, the right side of Eq. (26) will be non-
ositive. Since we have proved that 𝛼𝑢,𝛾 is non-negative, Eq. (26) is
atisfied. If the arrival request is scheduled to VNF 𝑓 ∗, according to the
pdate rules in Eq. (27) and the definition of 𝐾𝑓∗ , we have:

𝑢,𝛾 = 𝑡(𝛾)(1 −𝐾𝑓∗ ) ≥ 𝑡(𝛾)(1 − 𝛽𝑓 ) (28)

he inequality above is the same as the first set of constraints in
q. (25). Thus, the first set of constraints in Eq. (25) will not be
iolated after updating of dual variable 𝛼𝑢,𝛾 . Moreover, the update of
ual variables 𝛽𝑓 is accumulated, making the right side of the inequality
bove smaller, which satisfies the constraint. As a result, the algorithm
ill not violate the constraints in Eq. (25). □

To evaluate the performance of the proposed algorithm, we give the
efinition of competitive ratio as follows [41].

efinition 4. An online algorithm is [𝜁, 𝜂] competitive if it achieves at
east 𝜁 ⋅𝑂𝑃𝑇 , where 𝑂𝑃𝑇 is the result of the optimal solution, and the
onstraints are violated by a factor of 𝜂 at most.

In the following, we will prove that PDRS has a competitive ratio
f
[

1 − 𝜖, 𝑂(log 1
𝜖 )
]

.

emma 9. PDRS can reach a throughput of at least (1 − 𝜖) ⋅𝑂𝑃𝑇 , where
𝑂𝑃𝑇 is the result of the optimal solution.

Proof. When request 𝛾 is accepted, the objective value of Eq. (24)
increases by 𝑡(𝛾). However, for the dual program in Eq. (25), its
objective value increases by 𝛥:

𝛥 =𝑡(𝛾)(1 −𝐾𝑓∗ ) + (𝛽𝑓 ⋅
𝑡(𝛾)
𝑝(𝑓 )

+
𝜖 ⋅ 𝑡(𝛾)
𝑝(𝑓 )

) ⋅ 𝑝(𝑓 )

=(1 + 𝜖) ⋅ 𝑡(𝛾) (29)

That is, PDRS increases the objective value of the dual program by
(1+𝜖)⋅𝑡(𝛾). Therefore, the overall objective value of the dual program is
at least 1∕(1 + 𝜖) ≥ (1 − 𝜖) times as that of the optimal solution, i.e., the
throughput of our primal–dual algorithm is at least (1 − 𝜖) ⋅ 𝑂𝑃𝑇 . □

Then, we will prove that the violation of the capacity constraint on
each VNF will not exceed by a factor of 𝑂(log 1

𝜖 ). To prove this, we use
𝐿 (𝑓, 𝑘) to denote the load on VNF 𝑓 after request 𝛾𝑘 has been scheduled
to 𝑓 .

Lemma 10. For each request 𝛾𝑘, we have:

𝑓,𝑘 ≥ 𝜖 ⋅ (exp(𝐿(𝑓, 𝑘)∕𝑝(𝑓 )) − 1) (30)

here 𝛽𝑓,𝑘 is the value of 𝛽𝑓 after request 𝛾𝑘 is accepted.

roof. We prove the lemma by the induction of request 𝛾𝑘(𝑘 =
, 2,… , |

|

𝛤 𝑏
𝑢
|

|

− 1). Apparently, for each VNF 𝑓 ∈ 𝑏, 𝛽𝑓,𝑘 and 𝐿(𝑓, 0)
re zero at the beginning. Therefore, the inequality above holds. We
irst consider the situation where request 𝛾 is rejected. When request 𝛾
s rejected, VNF’s workload will not increase, so 𝐿(𝑓, 𝑘) = 𝐿(𝑓, 𝑘 − 1).
ccording to Alg. 2, 𝛽𝑓,𝑘 = 𝛽𝑓,𝑘−1 either. The lemma holds. Then we
onsider the situation where request 𝛾𝑘 is accepted. For 𝐿(𝑓, 𝑘), it will
e updated as 𝐿(𝑓, 𝑘) = 𝐿(𝑓, 𝑘− 1) + 𝑡(𝛾). According to Alg. 2, 𝛽𝑓,𝑘 will
e updated as:

𝑓,𝑘 = 𝛽𝑓,𝑘−1(1 +
𝑡(𝛾)
𝑝(𝑓 )

) +
𝜖 ⋅ 𝑡(𝛾)
𝑝(𝑓 )

(31)

By induction hypothesis, we apply inequality 𝛽𝑓,𝑘−1 ≥
𝜖 ⋅ (exp(𝐿(𝑓,𝑘−1)𝑝(𝑓 ) ) − 1) to Eq. (31) as follows:

𝑓,𝑘 = 𝜖 ⋅
[

exp(𝐿(𝑓, 𝑘 − 1)∕𝑝(𝑓 )) ⋅ (1 + 𝑡(𝛾)∕𝑝(𝑓 )) − 1
]

[ ]
8

≈ 𝜖 ⋅ exp(𝐿(𝑓, 𝑘 − 1)∕𝑝(𝑓 )) ⋅ exp(𝑡(𝛾)∕𝑝(𝑓 )) − 1
= 𝜖 ⋅ (exp(𝐿(𝑓, 𝑘)∕𝑝(𝑓 )) − 1) (32)

Here we apply the first order approximation 𝑒𝑥𝑝(𝑥) ≈ 1 + 𝑥 for a
small positive value 𝑥. Strict inequality can be established by a more
complicated update rule and leads to unnecessary complexity. As a
result, the lemma holds. □

Lemma 11. PDRS algorithm will not violate the capacity constraint by a
factor of 𝑂(log 1

𝜖 ) on each VNF.

Proof. Without loss of generality, we consider the capacity constraint
violation for each VNF 𝑓 ∈ 𝑏. According to Alg. 2 and Eq. (27),
the value of 𝛽𝑓 will be changed only if 𝐾𝑓∗ < 1. Since 𝐾𝑓∗ = 𝛽𝑓 ,

e have 𝛽𝑓 < 1 before the last update. Next, we discuss the last
pdate of 𝛽𝑓 . From the second set of equations in Eq. (27), we have
𝑓 ≤ 1 + 𝑡(𝛾)

𝑝(𝑓 ) +
𝜖⋅𝑡(𝛾)
𝑝(𝑓 ) ≤ 3. By applying Eq. (30) in Lemma 10, we can

btain:
𝐿(𝑓, 𝑘)
𝑝(𝑓 )

≤ log( 3
𝜖
+ 1) = 𝑂(log 1

𝜖
) (33)

That means the load on VNF 𝑓 will exceed its capacity by a factor
of 𝑂(log 1

𝜖 ) at most once a request is rejected. □

By combining Lemmas 9 and 11, we present the competitive ratio
of Alg. 2 as follows.

Theorem 12. The proposed algorithm has a competitive ratio of
[

1 − 𝜖, 𝑂(log 1
𝜖 )
]

with 𝜖 ∈ (0, 1).

5. Performance evaluation

In this section, we compare Reveal with state-of-the-art solutions.
We first give the metrics and benchmarks for performance comparison.
Then, we construct a small-scale testbed with Nvidia Jetson Tx2s and
Raspberry Pis to test the efficiency of the proposed algorithms. Finally,
to complement the small-scale testbed experiments, we perform sim-
ulations to show the theoretical performance of Reveal in large-scale
scenarios.

5.1. Performance metrics and benchmarks

Metrics. We adopt the following performance metrics in evaluations.
The first metric is the maximum number of affected VNFs. We calculate
the number of VNFs each user assigns and record the largest value
as the maximum number of affected VNFs when encountering the
malicious user. The second metric is the maximum number of affected
users. We calculate the number of users each VNF serves and record
the largest value as the maximum number of affected users when
encountering the failed VNF. The third and fourth metrics are packet
loss rates and round-trip time (RTT), which can be measured by the
typing tool [42]. The fifth and sixth metrics are the request completion
time and the 99%tile request completion time, which can be measured
by the Iperf tool [43]. The seventh metric is the average CPU utilization
of each edge cloud. We run command top on each edge cloud to monitor
the CPU utilization during the experiments. The eighth metric is the
network throughput, i.e., the total traffic of accepted requests.

Benchmarks. We compare Reveal with three benchmarks. The first
benchmark is a two-phase solution for joint VNF placement and request
scheduling, called GSP-SS [44]. GSP-SS first decides the VNF placement
based on the greedy heuristic with shadow request scheduling. Then it
decides the request scheduling based on the maximum flow algorithm.
Experiments show that it can achieve near-optimal performance. The
second benchmark is a randomized-rounding based algorithm called
SPR3 [11]. The objective of SPR3 is to maximize the network through-
put. Unlike our algorithm, SPR3 considers the VNF placement and

request scheduling simultaneously and can achieve close-to-optimal



Computer Networks 233 (2023) 109882J. Fang et al.
Fig. 2. The topology of testbed.
performance. The last benchmark is a reliability-aware adaptive VNF
placement scheme called RAD [45], which guarantees the availability
of VNFs by deciding the backup scheme of VNFs while minimize the
backup costs. Specifically, RAD determines the placement of VNFs and
additional backups for the given user request set. For fair evaluation,
we schedule the user requests to VNFs with minimum loads, which can
achieve near-optimal performance for the traditional VNF placement
problem [46].

5.2. Testbed evaluation

Settings. We use 6 Nvidia Jetson Tx2s equipped with ARM Cortex-A57
and 20 Raspberry Pis equipped with ARM Cortex-A72 to build a small-
scale testbed. Specifically, Nvidia Jetson Tx2s act as the edge clouds to
place VNFs, and Raspberry Pis act as the users to send requests. The
experimental network is established via a router, where Nvidia Jetson
Tx2s are directly connected to the router by Ethernet while Raspberry
Pis are accessed via wireless link. The network topology is depicted
as Fig. 2 We choose video cache as the VNF to provide services. Each
user obtains different videos from VNFs. If they are not cached in the
VNFs, they will be downloaded from the cloud and sent to the users. We
implement our tests with requests from Google cluster data [19]. We
use Iperf tool [43] to generate requests and send them to corresponding
VNFs. The default robustness constraints are set to 𝑘 = 6, and 𝑝 = 6 .

Overall performance comparison.This set of experiments evaluates
the influence scope (i.e., the maximum number of affected VNFs and
users) of abnormal situations of different algorithms. Figs. 3–4 show
that as the number of requests increases, Reveal obtains the least
influence scope compared with other benchmarks. For example, in
Fig. 3, Reveal reduces the maximum number of affected VNFs by 57%
on average compared with others. The reason is that Reveal takes
the robustness constraints into consideration, which can reduce the
influence scope of abnormal events.
9

Fig. 3. Max. no. of affected VNFs vs. no. of requests.

Fig. 4. Max. no. of affected users vs. no. of requests.

Comparison with the malicious user event. In this set of experi-
ments, we conduct the experiments under the scenario when encoun-
tering a malicious user to fully illustrate that limiting the number



Computer Networks 233 (2023) 109882J. Fang et al.
Fig. 5. Average packet loss rate of each edge cloud.

Fig. 6. Average RTT of each edge cloud.

Fig. 7. No. of requests vs. request completion time.

of VNFs assigned to each user can enhance the network robustness.
Specifically, we randomly select a user as the malicious user to attack
its assigned VNFs. The malicious user adopts the hping3 [47] to exhaust
the network bandwidth and uses the stress tool [48] to simulate mali-
cious applications that preempt computing resources. We then measure
packet loss rate, RTT, request completion time and CPU utilization
for performance comparison. From Figs. 5–8, we can see that Reveal
always achieves the best performance compared to three benchmarks.
For example, in Fig. 6, Reveal reduces the average RTT by 55%, 52%
and 53% compared with GSP-SS, SPR3 and RAD, respectively. Fig. 7
shows that 90% of requests have a completion time of less than 10 s
in Reveal while only 70%, 65% and 82% in GSP-SS, SPR3 and RAD,
respectively. The reason is that Reveal limits the number of VNFs each
user can assign, therefore controlling the influence of the malicious
user.

Comparison with the VNF failure event. In this set of experiments,
we conduct the experiments under the scenario of VNF failure to illus-
trate that limiting the number of users served by each VNF can enhance
the network robustness. The experiment results are shown in Figs. 9–
10. We randomly select a VNF to fail and all its served requests will be
transferred to another VNF. Since they need to be migrated to another
10
Fig. 8. Average CPU utilization (%) of each edge cloud.

Fig. 9. CDF of %99 tile RCT (s).

Fig. 10. %99 tile RCT of users.

VNF, these requests will take a longer completion time. Specifically, in
Fig. 9, the frequency of users with 99% tile request completion time less
than the 40 s is 60% by Reveal, while the frequency of that is 15%, 20%
and 42% by GSP-SS, SPR3 and RAD. Fig. 10 shows that the number of
affected users is 4 in Reveal, while in RAD, GSP-SS and SPR3 are 5, 13
and 16, respectively. Since RAD backups additional VNFs, it achieves
similar performance with Reveal. The results show that by limiting the
number of users each VNF will serve, Reveal controls the number of
users influenced by the VNF failure.

Summary. Through the above experiments, we can draw some con-
clusions. First, Figs. 3–4 show that, by applying robustness constraints,
Reveal can reduce negative effects when encountering abnormal sit-
uations. Second, from Figs. 5–8, we can see that the performance of
Reveal in terms of packet loss rates, average RTT, request completion
time and CPU utilization is much better than that of the comparison
algorithms. By limiting the number of VNFs each user can assign,
Reveal can reduce the impact of accidents such as encountering the
malicious user. At last, as shown in Figs. 9–10, Reveal obtains the
least number of users affected by the VNF failure, which means we can
guarantee QoS for more users when encountering the VNF failure.



Computer Networks 233 (2023) 109882J. Fang et al.

5

S
c
𝑚
n
t

Fig. 11. The large-scale network topology.
.3. Simulation evaluation

ettings. We conduct a similar simulation as [8,11]. The network
ontains |𝑁| = 9 edge clouds regularly distributed inside a 500 × 500
2 area. To evaluate the influence of the number of users in the
etwork, we adopt two scales of topologies. The first is a small-scale
opology containing |𝑈 | = 300 users, and the second has a larger scale

containing |𝑈 | = 1000 users, as shown in Fig. 11. The users randomly
distribute in the base station coverage area. Similar to [11], we set the
processing capacity of each edge cloud within [20, 30] GHz. The number
of VNFs in the network is | | = 500. The processing capacity of each
VNF is within [0.375, 0.5] GHz. The traffic of each user is conducted by
real-world datasets collected from Google [19]. We set the robustness
constraint to 𝑘 = 6, 𝑝 = 50 in the small topology, and 𝑘 = 10, 𝑝 = 100
in the large topology by default.

The simulations are performed under two scenarios. In the first sce-
nario, we do not modify all benchmarks, so they ignore the robustness
constraints when scheduling requests. The purpose of this scenario is to
evaluate the maximum number of affected VNFs if the malicious user
launches DoS attacks and the maximum number of affected users if the
VNF failure encounters. The scenario is denoted by (a). In the second
scenario, we modify all benchmarks by applying robustness constraints.
By limiting the number of VNFs each user can assign and the number
of users each VNF can serve, we mainly test the throughput for three
algorithms. This scenario is denoted by (b).

Performance comparison in scenario (a). The simulation results are
shown in Figs. 12–14. Fig. 12 shows that compared with all bench-
marks, our algorithm always acquires the minimum number of affected
VNFs. For example, giving 3600 requests in the small topology, Re-
veal decreases the maximum number of affected VNFs by 50%, 55%
and 58% compared with RAD, SPR3 and GSP-SS, respectively. In
Fig. 13, Reveal always obtains the minimum number of affected users
compared with other algorithms. Note that the maximum number of
affected users occasionally decreases when the number of requests
increases. The reason is that more VNFs are placed as the number of
requests increases, while the number of users is constant, so the number
11
of users allocated to each VNF decreases. Fig. 14 shows that Reveal
achieves similar throughput compared with RAD, SPR3 and GSP-SS,
while Reveal considers robustness constraints.

From Figs. 12–14, we can conclude that without robustness con-
straints, RAD, SPR3 and GSP-SS will suffer more influence when en-
countering the malicious user or the failed VNF compared with Reveal.
Moreover, Reveal can achieve similar network throughput compared
with other benchmarks while considering robustness constraints.

Performance comparison in scenario (b). In this set of simulations,
we add robustness constraints to other algorithms. When they schedule
requests, they will reject requests when the robustness constraints are
violated. Figs. 15–17 illustrate the influence of robustness constraints
on the network throughput. When the robustness constraints are re-
laxed, the throughput of all algorithms increases. For example, in
Fig. 15(a), when 𝑘 is relaxed from 2 to 6, the throughput of Reveal,
RAD, GSP-SS and SPR3 increases by 30%, 179%, 190% and 61%,
respectively. When we relax the robustness constraints, the network
throughput increases since the solution space expands. This denotes
that 𝑘 and 𝑝 should be carefully determined to achieve high network
performance. In addition, our algorithm always achieves the highest
network throughput compared with other algorithms. As shown in
Fig. 17(a), when there are 3.6 × 103 requests in the network, Reveal
improves the throughput by 210.9%, 56.7% and 26.2% compared with
SPR3, GSP-SS and RAD, respectively.

Summary. From the simulation results, we can draw some conclusions.
First, Reveal can significantly reduce the influence of the malicious
user and the failed VNF in the network. Second, Figs. 15–17 indicate
that Reveal can consistently achieve the highest throughput compared
with other algorithms, which apply the robustness constraints in re-
quest scheduling. The reason is that we consider robustness constraints
when designing Reveal, so even if we limit the number of VNFs each
user can assign and the number of users each VNF can serve, we can
schedule more requests compared with other algorithms.



Computer Networks 233 (2023) 109882

12

J. Fang et al.

Fig. 12. Max. no. of affected VNFs vs. no. of requests in (a).

Fig. 13. Max. no. of affected Users vs. no. of requests in (a).

Fig. 14. Network throughput vs. no. of requests in (a).

Fig. 15. Network throughput vs. k in scenario (b).



Computer Networks 233 (2023) 109882J. Fang et al.
Fig. 16. Network throughput vs. p in scenario (b).
Fig. 17. Network throughput vs. no. of requests in (b).
Table 2
Comparison table of existing solutions.

Categories Goals

VNF placement Minimizing the latency [51–53]
Maximizing the throughput [54,55]

Joint VNF placement and
request scheduling

Maximizing the throughput [11,44,49]
Provisioning deadline guarantee [56]
Maximizing social welfare [57]

SFC routing Guaranteeing SFC reliability [58–62]

Traffic analysis Preserving user privacy [21,63,64]

VNF migration Reducing migration cost [45,65,66]

6. Related works

As the scale of mobile applications increases, the edge cloud [49,50]
is proposed to serve user requests with less latency than remote central
clouds. Specifically, service providers place VNFs in edge clouds, while
users obtain services through forwarding requests to corresponding
VNFs. To provide stable services, we should consider the problem of
placing which VNFs in each edge cloud, and which user requests are
served by each VNF. In this section, we provide an overview of the
state-of-the-art VM placement and request scheduling approaches, as
well as existing works for improving the robustness of edge clouds. We
summary the existing works in Table 2.

Existing works on VNF placement and request scheduling mainly fo-
cus on improving the performance of edge clouds by minimizing access
latency [51–53], maximizing throughput [11,44,49,54,55], guarantee-
ing deadline [56] and maximizing social welfare [57]. For example,
work [51] jointly considers minimizing access latency and maximizing
service availability in edge clouds. It formulates the problem into an
integer linear programming problem and proposes a genetic algorithm.
The authors in work [11] propose SPR3, which studies the joint op-
13

timization of service placement and request routing in dense edge
clouds and achieves close-to-optimal performance with a randomized
rounding method. The authors in work [57] consider the problem of
pricing for distributed training tasks in edge clouds and propose an
auction-based online framework to solve it.

Besides improving the performance of edge clouds, it is also critical
to enhance the robustness of edge clouds. Some works ranging from
service function chain (SFC) routing [58–62], user traffic analysis [21,
63,64] to VNF migration [45,65,66] are proposed for DDoS attack
prevention [67], privacy protection [68,69] and federated leanring
security [23,70]. For example, The authors in [58] present a reliability
oriented SFC construction and backup method to solve the SFC backup
problem. The experiments show that the proposed backup method can
reduce the consumption of bandwidth by 11.7% compared with other
alternatives. The authors in work [67] adopt remote clouds to filter the
potentially large volume of DDoS traffic, which cannot be prevented
entirely in the edge cloud due to its limited computing resources. How-
ever, this work introduces new drawbacks such as privacy violation
and latency, since the user traffic will be redirected and processed by
remote clouds. To prevent leakage of location information, work [69]
provides a chaff-based approach minimizing the malicious tracking
accuracy. This approach is implemented as a dedicated VNF, which
needs additional resources to place at edge clouds. Work [71] provides
a VNF replication scheme to guarantee users’ QoS when some VNFs
fail. Experimental results demonstrate that the proposed algorithms
can reduce the VNF backup costs compared with baseline algorithms.
Specifically, one user request may be served by multiple VNFs, and the
user waits for the fastest completion of requests among replicas. How-
ever, in edge clouds, resources such as computing capacity are limited.
If we schedule one request to 5 edge nodes, the system throughput
will be significantly degraded by 1/5. From the above discussion, we
can find that previous works mainly focus on improving edge clouds’
robustness by preventing malicious attacks or recovery of VNF failures
with additional resources (e.g., dedicated security VNFs, backup VNFs).
Considering that edge clouds have limited resource, these methods may



Computer Networks 233 (2023) 109882J. Fang et al.
degrade the total system throughput. Unlike the previous studies, in this
paper, we focus on how to limit the impact scope caused by malicious
users or VNF failures to alleviate negative impacts to edge clouds,
which complements previous works.

7. Conclusion

In this paper, we focus on the problem of robust VNF placement
and request scheduling in edge clouds and present Reveal. We split the
problem into two sub-problems: robust VNF placement and assignment,
and online request scheduling. Two efficient algorithms are proposed to
solve these sub-problems. Experimental and simulation results show
that our algorithms can achieve high performance while guaranteeing
robustness.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The corresponding author of this paper is Gongming Zhao. This
work was supported in part by the National Science Foundation of
China (NSFC) under Grants 62102392, 62132019, 61936015, in part
by the National Science Foundation of Jiangsu Province under Grant
BK20210121, in part by the Hefei Municipal Natural Science Foun-
dation under Grant 2022013, and in part by the Youth Innovation
Promotion Association of Chinese Academy of Sciences under Grant
2023481.

References

[1] L. Tong, Y. Li, W. Gao, A hierarchical edge cloud architecture for mobile
computing, in: IEEE INFOCOM 2016, pp. 1–9.

[2] J. Pan, J. McElhannon, Future edge cloud and edge computing for internet of
things applications, IEEE Internet Things J. 5 (1) (2017) 439–449.

[3] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, R.P. Liu, Energy-efficient admission
of delay-sensitive tasks for mobile edge computing, IEEE Trans. Commun. 66
(6) (2018) 2603–2616.

[4] Y. Wang, Y. Zhang, M. Sheng, K. Guo, On the interaction of video caching and
retrieving in multi-server mobile-edge computing systems, IEEE Wirel. Commun.
Lett. 8 (5) (2019) 1444–1447.

[5] L. Liu, M. Gruteser, EdgeSharing: Edge assisted real-time localization and object
sharing in urban streets, in: IEEE INFOCOM 2021.

[6] M.E. Computing, Deployment of Mobile Edge Computing in an NFV Environment,
Vol. 17, ETSI Group Report MEC, 2018, p. V1.

[7] T. Ouyang, R. Li, X. Chen, Z. Zhou, X. Tang, Adaptive user-managed service
placement for mobile edge computing: An online learning approach, in: IEEE
INFOCOM 2019, pp. 1468–1476.

[8] J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for mobile
edge computing in dense networks, in: IEEE INFOCOM 2018, pp. 207–215.

[9] S. Agarwal, F. Malandrino, C.-F. Chiasserini, S. De, Joint VNF placement and
CPU allocation in 5G, in: IEEE INFOCOM 2018, pp. 1943–1951.

[10] L. Gu, D. Zeng, J. Hu, B. Li, H. Jin, Layer aware microservice placement
and request scheduling at the edge, in: IEEE INFOCOM 2021 - IEEE Confer-
ence on Computer Communications, 2021, pp. 1–9, http://dx.doi.org/10.1109/
INFOCOM42981.2021.9488779.

[11] K. Poularakis, J. Llorca, A.M. Tulino, I. Taylor, L. Tassiulas, Service place-
ment and request routing in MEC networks with storage, computation, and
communication constraints, IEEE/ACM Trans. Netw. 28 (3) (2020) 1047–1060.

[12] H. Li, L. Wang, Online orchestration of cooperative defense against DDoS
attacks for 5G MEC, in: 2018 IEEE Wireless Communications and Networking
Conference, WCNC.

[13] N.-N. Dao, T.V. Phan, U. Sa’ad, J. Kim, T. Bauschert, D.-T. Do, S. Cho, Securing
heterogeneous iot with intelligent ddos attack behavior learning, IEEE Syst. J.
(2021).
14
[14] J. Hou, P. Fu, Z. Cao, A. Xu, Machine learning based ddos detection
through NetFlow analysis, in: MILCOM 2018 - 2018 IEEE Military Communica-
tions Conference, MILCOM, pp. 1–6, http://dx.doi.org/10.1109/MILCOM.2018.
8599738.

[15] T. He, E.N. Ciftcioglu, S. Wang, K.S. Chan, Location privacy in mobile edge
clouds: A chaff-based approach, IEEE J. Sel. Areas Commun. 35 (11) (2017)
2625–2636, http://dx.doi.org/10.1109/JSAC.2017.2760179.

[16] R. Potharaju, N. Jain, Demystifying the dark side of the middle: A field study
of middlebox failures in datacenters, in: Proceedings of the 2013 Conference on
Internet Measurement Conference, 2013, pp. 9–22.

[17] Jia, C. Yang, Reliability-aware dynamic service chain scheduling in 5G networks
based on reinforcement learning, in: IEEE INFOCOM 2021.

[18] C. Delimitrou, C. Kozyrakis, Bolt: I know what you did last summer... in the
cloud, ACM SIGARCH Comput. Archit. News 45 (1) (2017) 599–613.

[19] J. Wilkes, Google Cluster-Usage Traces v3, Google Inc, Mountain View, CA, USA,
2020.

[20] M. Masdari, M. Jalali, A survey and taxonomy of DoS attacks in cloud computing,
Secur. Commun. Netw. 9 (16) 3724–3751.

[21] A.S. Sohal, R. Sandhu, S.K. Sood, V. Chang, A cybersecurity framework to iden-
tify malicious edge device in fog computing and cloud-of-things environments,
Comput. Secur. 74 (2018) 340–354.

[22] A. Randazzo, I. Tinnirello, Kata containers: An emerging architecture for enabling
MEC services in fast and secure way, in: 2019 Sixth International Conference on
Internet of Things: Systems, Management and Security, IOTSMS, pp. 209–214.

[23] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, V. Shmatikov, How to backdoor
federated learning, in: International Conference on Artificial Intelligence and
Statistics, PMLR, 2020, pp. 2938–2948.

[24] S. Ntalampiras, M. Fiore, Forecasting mobile service demands for anticipatory
MEC, in: 2018 IEEE 19th International Symposium on" a World of Wireless,
Mobile and Multimedia Networks"(WoWMoM), pp. 14–19.

[25] I. Pelle, F. Paolucci, B. Sonkoly, F. Cugini, Latency-sensitive edge/cloud serverless
dynamic deployment over telemetry-based packet-optical network, IEEE J. Sel.
Areas Commun. 39 (9) (2021) 2849–2863.

[26] S. Guo, Y. Dai, S. Xu, X. Qiu, F. Qi, Trusted cloud-edge network resource
management: DRL-driven service function chain orchestration for IoT, IEEE
Internet Things J. 7 (7) (2019) 6010–6022.

[27] T.L. Duc, R.G. Leiva, P. Casari, P.-O. Östberg, Machine learning methods for
reliable resource provisioning in edge-cloud computing: A survey, ACM Comput.
Surv. 52 (5) (2019) 1–39.

[28] L. Toka, G. Dobreff, B. Fodor, B. Sonkoly, Machine learning-based scaling
management for kubernetes edge clusters, IEEE Trans. Netw. Serv. Manag. 18
(1) (2021) 958–972.

[29] X. Xu, Z. Fang, L. Qi, X. Zhang, Q. He, X. Zhou, Tripres: Traffic flow prediction
driven resource reservation for multimedia iov with edge computing, ACM Trans.
Multimedia Comput. Commun. Appl. (TOMM) 17 (2) (2021) 1–21.

[30] M. Chen, Y. Miao, H. Gharavi, L. Hu, I. Humar, Intelligent traffic adaptive
resource allocation for edge computing-based 5G networks, IEEE Trans. Cogn.
Commun. Netw. 6 (2) (2019) 499–508.

[31] A. Furno, D. Naboulsi, R. Stanica, M. Fiore, Mobile demand profiling for cellular
cognitive networking, IEEE Trans. Mob. Comput. 16 (3) (2016) 772–786.

[32] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, M. Satyanarayanan, Adaptive
VM Handoff Across Cloudlets, Technical Report CMU-CS-15-113, Computer
Science Department, Carnegie Mellon University, 2015.

[33] Z. Xu, W. Liang, W. Xu, M. Jia, S. Guo, Efficient algorithms for capaci-
tated cloudlet placements, IEEE Trans. Parallel Distrib. Syst. 27 (10) (2015)
2866–2880.

[34] A. Ceselli, M. Premoli, S. Secci, Mobile edge cloud network design optimization,
IEEE/ACM Trans. Netw. 25 (3) (2017) 1818–1831.

[35] D.B. Shmoys, É. Tardos, An approximation algorithm for the generalized
assignment problem, Math. Program. 62 (1) (1993) 461–474.

[36] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, H. Wang, Incremental deployment
and throughput maximization routing for a hybrid SDN, IEEE/ACM Trans. Netw.
25 (3) (2017) 1861–1875.

[37] L.-C. Chen, H.-A. Choi, Approximation algorithms for data distribution with load
balancing of web servers, in: Cluster, Vol. 1, Citeseer, 2001, p. 274.

[38] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis, Cambridge University
Press, 2017.

[39] PuLP, 2022, URL https://pypi.org/project/PuLP/. (Accessed 14 February 2022).
[40] G. Zhao, H. Xu, S. Chen, L. Huang, P. Wang, Joint optimization of flow table

and group table for default paths in SDNs, IEEE/ACM Trans. Netw. (2018).
[41] L. Guo, J. Pang, A. Walid, Joint placement and routing of network function

chains in data centers, in: IEEE INFOCOM 2018, pp. 612–620.
[42] tcping, 2022, URL https://www.elifulkerson.com/projects/tcping.php. (Accessed

14 February 2022).
[43] iperf, 2022, URL https://iperf.fr/. (Accessed 14 February 2022).
[44] V. Farhadi, F. Mehmeti, T. He, T.F. La Porta, H. Khamfroush, S. Wang, K.S.

Chan, K. Poularakis, Service placement and request scheduling for data-intensive
applications in edge clouds, IEEE/ACM Trans. Netw. 29 (2) (2021) 779–792.

http://refhub.elsevier.com/S1389-1286(23)00327-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb1
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb2
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb3
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb4
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb5
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb6
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb7
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb8
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb9
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb9
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488779
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488779
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488779
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb11
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb12
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb13
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb13
http://dx.doi.org/10.1109/MILCOM.2018.8599738
http://dx.doi.org/10.1109/MILCOM.2018.8599738
http://dx.doi.org/10.1109/MILCOM.2018.8599738
http://dx.doi.org/10.1109/JSAC.2017.2760179
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb16
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb17
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb18
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb19
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb20
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb21
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb22
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb23
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb24
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb25
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb26
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb27
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb28
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb29
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb30
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb31
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb31
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb31
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb32
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb33
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb34
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb34
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb34
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb35
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb36
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb37
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb37
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb37
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb38
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb38
https://pypi.org/project/PuLP/
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb40
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb41
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb41
https://www.elifulkerson.com/projects/tcping.php
https://iperf.fr/
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb44
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb44


Computer Networks 233 (2023) 109882J. Fang et al.
[45] X. Shang, Y. Huang, Z. Liu, Y. Yang, Reducing the service function chain backup
cost over the edge and cloud by a self-adapting scheme, IEEE Trans. Mob.
Comput. 21 (8) (2021) 2994–3008.

[46] K. Shanmugam, N. Golrezaei, A.G. Dimakis, A.F. Molisch, G. Caire, Femtocaching:
Wireless content delivery through distributed caching helpers, IEEE Trans.
Inform. Theory 59 (12) (2013) 8402–8413.

[47] hping, 2022, URL http://hping.org/. (Accessed 14 February 2022).
[48] stress, 2022, URL https://linux.die.net/man/1/stress. (Accessed 14 February

2022).
[49] T. He, H. Khamfroush, S. Wang, T. La Porta, S. Stein, It’s hard to share: Joint

service placement and request scheduling in edge clouds with sharable and non-
sharable resources, in: 2018 IEEE 38th International Conference on Distributed
Computing Systems, ICDCS, IEEE, 2018, pp. 365–375.

[50] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, K.K. Leung, Dynamic service
migration in mobile edge-clouds, in: 2015 IFIP Networking Conference, IFIP
Networking, 2015, http://dx.doi.org/10.1109/IFIPNetworking.2015.7145316.

[51] L. Yala, P.A. Frangoudis, A. Ksentini, Latency and availability driven VNF
placement in a MEC-NFV environment, in: 2018 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2018, pp. 1–7.

[52] R. Cziva, C. Anagnostopoulos, D.P. Pezaros, Dynamic, latency-optimal vNF
placement at the network edge, in: IEEE Infocom 2018-Ieee Conference on
Computer Communications, IEEE, 2018, pp. 693–701.

[53] G. Zhao, H. Xu, Y. Zhao, C. Qiao, L. Huang, Offloading tasks with dependency
and service caching in mobile edge computing, IEEE Transactions on Parallel
and Distributed Systems 32 (11) (2021) 2777–2792, http://dx.doi.org/10.1109/
TPDS.2021.3076687.

[54] Z. Xu, Z. Zhang, J.C. Lui, W. Liang, Q. Xia, P. Zhou, W. Xu, G. Wu, Affinity-aware
VNF placement in mobile edge clouds via leveraging GPUs, IEEE Trans. Comput.
70 (12) (2020) 2234–2248.

[55] Y. Yue, B. Cheng, M. Wang, B. Li, X. Liu, J. Chen, Throughput optimization
and delay guarantee VNF placement for mapping SFC requests in NFV-enabled
networks, IEEE Trans. Netw. Serv. Manag. 18 (4) (2021) 4247–4262, http:
//dx.doi.org/10.1109/TNSM.2021.3087838.

[56] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, X. Fu, Delay-aware virtual
network function placement and routing in edge clouds, IEEE Trans. Mob.
Comput. 20 (2) (2019) 445–459.

[57] R. Zhou, N. Wang, Y. Huang, J. Pang, H. Chen, DPS: Dynamic pricing and
scheduling for distributed machine learning jobs in edge-cloud networks, IEEE
Trans. Mob. Comput. (2022).

[58] L. Qu, C. Assi, K. Shaban, M.J. Khabbaz, A reliability-aware network service
chain provisioning with delay guarantees in NFV-enabled enterprise datacenter
networks, IEEE Trans. Netw. Serv. Manag. 14 (3) (2017) 554–568.

[59] L. Qu, C. Assi, M.J. Khabbaz, Y. Ye, Reliability-aware service function chaining
with function decomposition and multipath routing, IEEE Trans. Netw. Serv.
Manag. 17 (2) (2019) 835–848.

[60] Y. Wang, L. Zhang, P. Yu, K. Chen, X. Qiu, L. Meng, M. Kadoch, M. Cheriet,
Reliability-oriented and resource-efficient service function chain construction and
backup, IEEE Trans. Netw. Serv. Manag. 18 (1) (2020) 240–257.

[61] M. Wang, B. Cheng, J. Chen, Joint availability guarantee and resource optimiza-
tion of virtual network function placement in data center networks, IEEE Trans.
Netw. Serv. Manag. 17 (2) (2020) 821–834.

[62] H. Tu, G. Zhao, H. Xu, Y. Zhao, Y. Qiu, L. Huang, RoNS: Robust net-
work function services in clouds, Comput. Netw. (ISSN: 1389-1286) 215
(2022) 109212, http://dx.doi.org/10.1016/j.comnet.2022.109212, https://www.
sciencedirect.com/science/article/pii/S1389128622002961.

[63] R. Sairam, S.S. Bhunia, V. Thangavelu, M. Gurusamy, NETRA: Enhancing IoT
security using NFV-based edge traffic analysis, IEEE Sens. J. (2019) http://dx.
doi.org/10.1109/JSEN.2019.2900097.

[64] W. Du, A. Li, P. Zhou, B. Niu, D. Wu, Privacyeye: A privacy-preserving and
computationally efficient deep learning-based mobile video analytics system,
IEEE Trans. Mob. Comput. 21 (9) (2021) 3263–3279.

[65] H. Wang, H. Xu, H. Huang, M. Chen, S. Chen, Robust task offloading in dynamic
edge computing, IEEE Trans. Mob. Comput. (2021).

[66] W. Mingshi, L. Junqin, H. Tianxiang, W. Pingping, Y. Kang, H. Jiakai, Z.
Diwen, Y. Yang, T. Riming, Failure prediction based VNF migration mechanism
for multimedia services in power grid substation monitoring, in: 2022 IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting,
BMSB, IEEE, 2022, pp. 1–6.

[67] T. Alharbi, A. Aljuhani, H. Liu, Holistic DDoS mitigation using NFV, in: 2017
IEEE 7th Annual Computing and Communication Workshop and Conference,
CCWC, 2017, http://dx.doi.org/10.1109/CCWC.2017.7868480.
15
[68] F. Nawab, Wedgechain: A trusted edge-cloud store with asynchronous (lazy)
trust, in: 2021 IEEE 37th International Conference on Data Engineering, ICDE,
IEEE, 2021, pp. 408–419.

[69] T. He, E.N. Ciftcioglu, S. Wang, K.S. Chan, Location privacy in mobile edge
clouds: A chaff-based approach, IEEE J. Sel. Areas Commun. 35 (11) (2017)
2625–2636.

[70] T. Li, S. Hu, A. Beirami, V. Smith, Ditto: Fair and robust federated learning
through personalization, in: International Conference on Machine Learning,
PMLR, 2021, pp. 6357–6368.

[71] J. Li, W. Liang, M. Huang, X. Jia, Reliability-aware network service provisioning
in mobile edge-cloud networks, IEEE Trans. Parallel Distrib. Syst. 31 (7) (2020)
1545–1558.

Jin Fang received the B.S. degree in the College of Com-
puter Science and Electronic Engineering, Hunan University
in 2020. He is pursuing the Ph.D. degree in computer
software and theory at the University of Science and
Technology of China. His current research interests include
software-defined networks, distributed training systems and
programmable networks.

Gongming Zhao received the Ph.D. degree in computer
software and theory from the University of Science and
Technology of China in 2020. He is currently an As-
sociate Professor with the University of Science and
Technology of China. His current research interests include
software-defined networks and cloud computing.

Hongli Xu received the B.S. degree in computer science and
the Ph.D. degree in computer software and theory from the
University of Science and Technology of China in 2002 and
2007, respectively He is currently an Associate Professor
with the School of Computer Science and Technology,
University of Science and Technology of China. He has
authored or coauthored over 70 papers, and held about
30 patents. His main research interest is software-defined
networks, cooperative communication, and vehicular ad hoc
network.

Huaqing Tu is currently pursuing the Ph.D. degree in com-
puter science at the University of Science and Technology
of China. Her main research interests are software-defined
networks and cloud computing.

Haibo Wang is currently pursuing the Ph.D. degree in
computer science from the University of Florida. His current
research interests lies in the intersection between network
measurement and data streaming algorithms, with a focus
on the high-speed streamed big data analytics.

http://refhub.elsevier.com/S1389-1286(23)00327-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb45
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb46
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb46
http://hping.org/
https://linux.die.net/man/1/stress
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb49
http://dx.doi.org/10.1109/IFIPNetworking.2015.7145316
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb51
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb51
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb51
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb51
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb51
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb52
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb52
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb52
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb52
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb52
http://dx.doi.org/10.1109/TPDS.2021.3076687
http://dx.doi.org/10.1109/TPDS.2021.3076687
http://dx.doi.org/10.1109/TPDS.2021.3076687
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb54
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb54
http://dx.doi.org/10.1109/TNSM.2021.3087838
http://dx.doi.org/10.1109/TNSM.2021.3087838
http://dx.doi.org/10.1109/TNSM.2021.3087838
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb56
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb56
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb56
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb56
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb56
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb57
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb57
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb57
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb57
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb57
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb58
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb58
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb58
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb58
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb58
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb59
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb59
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb59
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb59
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb59
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb60
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb60
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb60
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb60
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb60
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb61
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb61
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb61
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb61
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb61
http://dx.doi.org/10.1016/j.comnet.2022.109212
https://www.sciencedirect.com/science/article/pii/S1389128622002961
https://www.sciencedirect.com/science/article/pii/S1389128622002961
https://www.sciencedirect.com/science/article/pii/S1389128622002961
http://dx.doi.org/10.1109/JSEN.2019.2900097
http://dx.doi.org/10.1109/JSEN.2019.2900097
http://dx.doi.org/10.1109/JSEN.2019.2900097
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb64
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb64
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb64
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb64
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb64
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb65
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb65
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb65
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb66
http://dx.doi.org/10.1109/CCWC.2017.7868480
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb68
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb68
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb68
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb68
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb68
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb69
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb69
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb69
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb69
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb69
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb70
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb70
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb70
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb70
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb70
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb71
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb71
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb71
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb71
http://refhub.elsevier.com/S1389-1286(23)00327-4/sb71

	Reveal: Robustness-aware VNF placement and request scheduling in edge clouds
	Introduction
	Preliminary
	Application Scenario and Motivation
	System Model
	Problem Statement
	Algorithm Workflow

	Robust VNF Placement and Assignment
	Problem Formulation
	Problem Complexity Analysis
	Algorithm Design
	Performance Analysis

	Online Request Scheduling
	Problem Formulation
	Algorithm Design
	Performance Analysis

	Performance Evaluation
	Performance Metrics and Benchmarks
	Testbed Evaluation
	Simulation Evaluation

	Related Works
	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


