Non-Idle Machine-Aware Worker Placement for Efficient Distributed Training in GPU Clusters

Jin Fang Gongming Zhao, Hongli Xu, Luyao Luo, Zhen Yao, An Xie

Collective Communication in DT

- With the increasing complexity of machine learning (ML) applications, the scale of ML tasks grows explosively
- > **Distributed training** is proposed to speed up the training of large-scale ML tasks
- Placing workers on GPUs of machines to perform one DT task, where workers communicates collectively to synchronize gradients/parameters

Problem: Resource Fragmentation

> One machine is equipped with multiple GPUs

(e.g., 8 GPUs)

- > The number of workers of a DT job varies
 - \rightarrow DP = 2 -> 2 workers
 - > TP = 8 -> 8 workers

> DP = 2 and TP =8 -> 2*8=16 workers

- > The arrival time of DT jobs is unpredictable
- There exists a lot of fragmented idle GPUs, leading to low resource utilization

Existing Solution

Consolidation-First Placement

Elasticflow¹ (ASPLOS 23): allocate the resource at the scale of machine Resource oversubscription

Fragmentation-First Placement

> HiveD² (OSDI 20): priority place placing workers in fragmented machines

Large comm. overhead

- Gu D, Zhao Y, Zhong Y, et al. ElasticFlow: An elastic serverless training platform for distributed deep learning[C]//Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 2023: 266-280.
- 2. Zhao H, Han Z, Yang Z, et al. {HiveD}: Sharing a {GPU} cluster for deep learning with guarantees[C]//14th USENIX symposium on operating systems design and implementation (OSDI 20). 2020: 515-532.

A Motivating Example

Collective communication operations take multiple steps, where each step contains different communication pairs and amounts

Workers in one DT job have different communication pattern.

A Motivating Example-Elasticflow

> Consolidation placement to minimize the amount of cross-machine traffic

A Motivating Example-HiveD

> Using fragmented machines to minimize the number of used machines

(a) Communication Pattern Example

A Motivating Example-Titan (Ours)

- > Consider the map of workers to GPUs according to collective communication algorithms
- > Avoid the use of idle machines

(a) Communication Pattern Example

No. of Machines = 3 Cross-machine Traffic = K

(d) Titan (Ours)

Titan: Problem Formulation

Network Model

- > Machine set: $S = \{s_1, s_2, ..., s_{|S|}\}$, each with *K* GPUs
- > Non-Idle machine set: $S_f \subset S$
- ≻ Idle machine set: $S_n \subset S$

> Available bandwidth between machines s and s': $P_{s,s'} \in \mathbb{Z}$

Communication Pattern

- > Worker set: $N = \{n_1, n_2, ..., n_{|N|}\}$
- > The traffic amount between worker pair (n, n') in phase $t : C_{n,n'}^t \in \mathbb{Z}$

Titan: Problem Formulation

- > Objective
 - 1. Minimize the number of Idle-machines: reduce resource fragmentation
 - 2. Minimize the number of total machines: reduce the amount of cross-machine traffic

- Placement constraint
- Resource constraint
- Bandwidth constraint

$$\min O_{1} = \sum_{s \in S_{n}} y_{s}$$

$$\min O_{2} = \sum_{s \in S} y_{s}$$

$$S.t. \begin{cases} \sum_{s \in S} x_{n}^{s} = 1, & \forall n \in N \\ \sum_{s \in S} x_{n}^{s} \leq R_{s}, & \forall s \in S \end{cases}$$

$$S.t. \begin{cases} \sum_{n \in N} \sum_{n' \in N} x_{n}^{s} \cdot x_{n'}^{s'} \cdot C_{n,n'}^{t} \leq P_{s,s'}, & \forall s, s' \in S, t \in T \end{cases}$$

$$y_{s} \geq x_{n}^{s}, & \forall s \in S, n \in N \end{cases}$$

$$y_{s} \in \{0, 1\}, & \forall s \in S \end{cases}$$

$$(1)$$

Titan: Algorithm Design

> Convert the problem into an equivalent maximization problem

> So we can construct the submodular function for the greedy algorithm

$$\min O_{1} = \sum_{s \in S_{n}} y_{s}$$

$$\min O_{2} = \sum_{s \in S} y_{s}$$

$$\max O_{1} = C_{\max} - \sum_{s \in S_{n}} C(\mathcal{N}_{s})$$

$$\max O_{2} = C_{\max} - \sum_{s \in S_{n}} C(\mathcal{N}_{s})$$

$$\max O_{2} = C_{\max} - \sum_{s \in S_{n}} C(\mathcal{N}_{s})$$

$$\max O_{2} = C_{\max} - \sum_{s \in S_{n}} C(\mathcal{N}_{s})$$

$$\max O_{2} = C_{\max} - \sum_{s \in S_{n}} C(\mathcal{N}_{s})$$

$$\sum_{\substack{s \in S \\ n \in N}} \sum_{\substack{n \in N \\ n' \in N}} x_{n}^{s} \leq R_{s}, \qquad \forall s \in S$$

$$\sum_{\substack{s \in S \\ n \in N}} x_{n}^{s} \leq R_{s}, \qquad \forall s \in S$$

$$\sum_{\substack{s \in S \\ n \in N}} \sum_{\substack{n \in N \\ n' \in N}} x_{n}^{s} \leq R_{s}, \qquad \forall s \in S$$

$$\sum_{\substack{n \in N \\ n' \in N \\ y_{s} \geq x_{n}^{s}, \qquad \forall s \in S, n \in N \\ y_{s} \in \{0,1\}, \qquad \forall s \in S, n \in N \\ y_{s} \in \{0,1\}, \qquad \forall s \in S, n \in N$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

Titan: Algorithm Design

Solve the converted problem with a submodular-based greedy algorithm

- Search the feasible worker set for each machine to guarantee bandwidth constraint
- Merge the worker set with submodular function to minimize the number of used idle machines
- Update and merge the worker set to minimize the number of used machines

Algorithm 1 Search for Feasible Worker Set

- 1: Step 1: Initialization
- 2: Let feasible worker set $A(s) = \emptyset$ for machine s.
- 3: Let available worker set $N_c = N \mathcal{N}$.
- 4: Step 2: Iterative update feasible worker sets according to collective communication
- 5: Use $C_{f,f'}$ to denote the existing communication overhead between machines s and s'.
- 6: for $n \in N_c$ do
- 7: for $n' \in \mathcal{N}$ do
- 8: for $t \in T$ do
- 9: **if** $C_{n,n'}^t + \mathcal{C}_{f,f'} \leq P_{s,s'}$ then
- 10: $A(s) \leftarrow A(s) + n$
- 11: **end if**
- 12: end for
- 13: **end for**
- 14: **end for**
- 15: Output the feasible worker set A(s) for machine s.

Algorithm 3 The Overall Algorithm

- Step 1: Minimizing the Number of Deployed New Racks
 Initiate N_s, ∀s ∈ S_n by randomly distributing workers.
- 3: Initiate $\Phi_n \leftarrow \emptyset$.
- 4: Calculate Φ_n on idle machine set S_n with Alg. 2.
- 5: Step 2: Minimizing the Total Number of Deployed Racks
- 6: Initiate $\mathcal{N}_s, \forall s \in S_f \cup \Phi_n$ by randomly distributing workers.
- 7: Initiate $\Phi \leftarrow \emptyset$.
- 8: Calculate Φ on machine set $S_f \cup \Phi_n$ with Alg. 2.
- 9: Step 3: Determining the Deployment of Workers
- 10: for $\mathcal{N}_s \in \Phi$ do

```
11: Set x_n^s = 1, \forall n \in \mathcal{N}_s, s \in S.
12: end for
```

Titan: Algorithm Design

Solve the converted problem with a submodular-based greedy algorithm

- Search the feasible worker set for each machine to guarantee bandwidth constraint
- Merge the worker set with submodular function to minimize the number of used idle machines
- Update and merge the worker set to minimize the number of used machines
- Tight approximate ratio (1-1/e)

Algorithm 2 Submodular-based Algorithm

- 1: Step 1: Initialization
- 2: Initiate $\mathcal{N}_s, \forall s \in S$ by randomly distributing workers.
- 3: Initiate $\Phi \leftarrow \emptyset$.
- 4: Step 2: Iterative Merging Worker Subsets
- 5: while $|\Phi| \le K 1$ do
- 6: Set $tmp \leftarrow 0, opt \leftarrow 0$
- 7: for $s \in S_n$ do
- 8: for $n \in \mathcal{N}_s \Phi$ do
- 9: $tmp \leftarrow H(\Phi \cup \{n\})$
- 10: **if** tmp > opt **then**
- 11: $opt \leftarrow tmp, \, \mathcal{N}^* \leftarrow \mathcal{N}^* + \{n\}$
- 12: **end if**
- 13: end for
- 14: **end for**
- 15: $\Phi \leftarrow \Phi + \mathcal{N}^*$
- 16: Update the feasible worker sets based on the bandwidth constraint of Eq. (5) with Alg. 1.
- 17: end while
- 18: Deploy the remaining workers on one machine (*i.e.*, $\Phi \leftarrow \Phi + \{N \bigcup_{N \in \Phi} N\}$).

$$\sum_{n \in \mathcal{N}_s} \sum_{n' \in \mathcal{N}_{s'}} C_{n,n'}^t \le P_{s,s'}, \forall s' \in S, t \in T$$
(5)

Evaluation: Setup

Simulation Topology

- > Fat-tree topology with 64 racks, each of which contains 8 machines
- > Each machine is equipped with 8 GPUs
- > All connected with 100Gbps links

Real-world Traces

- Microsoft cluster: 2-month trace with 69742 jobs
- Shanghai AI lab cluster: 6-month trace with 880740 jobs

Evaluation: Setup

Benchmark

- Elasticflow¹: consolidate the placed GPUs so that the job is allocated with the highest possible bandwidth between its workers
- HiveD²: prioritize placing workers in fragmented machines to reduce the machine fragmentation of the cluster
- Tiresias³: minimize the total network traffic and balance the network load across machines in the cluster, by profiling the characteristics of different models

3. Gu J, Chowdhury M, Shin K G, et al. Tiresias: A {GPU} cluster manager for distributed deep learning[C]//16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). 2019: 485-500.

Evaluation: Fragmentation Rate

> Record the ratio of non-idle machines in the cluster, after a job arrives

Fig. 4: Machine Fragmentation Rate vs. Timestamp

Titan reduces machine fragmentation rate by 38.1%

Evaluation: Comm. Overhead

> Use the HD algorithm and calculate the total communication overhead

Fig. 5: Communication Overhead vs. Timestamp

Titan reduces communication overhead of the cluster by 76.4%

Evaluation: Profit

Profit relates to No. of jobs, price of the job, No. of used machines and the duration of each job (See the manuscript for details)

Fig. 6: Profit Rate vs. Timestamp

Fig. 7: Total Profit vs. Timestamp

Titan improves the total profit by 41.2%~65X

Goal

Minimize the resource fragmentation rate of GPU cluster with non-idle machine-aware worker placement

Challenges

- Collective Communication constraint
- Resource fragmentation limitation
- Model a multi-subjective non-linear problem

Solution

Submodular-based greedy algorithm with a tight approximation ratio

IEEE International Conference on Network Protocols (ICNP 2024)

Committee, Reviewers, Volunteers

My Advisors and Collaborators!

Jin Fang fangjin98@mail.ustc.edu.cn www.fangjin.site