Non-Idle Machine-Aware Worker Placement for Efficient Distributed Training in GPU Clusters

Jin Fang Gongming Zhao, Hongli Xu, Luyao Luo, Zhen Yao, An Xie

Collective Communication in DT

- Ø With the increasing complexity of machine learning (ML) applications, the scale of ML tasks grows explosively
- Ø **Distributed training** is proposed to speed up the training of large-scale ML tasks
- Ø Placing workers on GPUs of machines to perform one DT task, where workers communicates collectively to synchronize gradients/parameters

Problem: Resource Fragmentation

 \triangleright One machine is equipped with multiple GPUs

(e.g., 8 GPUs)

- \triangleright The number of workers of a DT job varies
	- \triangleright DP = 2 -> 2 workers
	- \triangleright TP = 8 -> 8 workers
	- \triangleright DP = 2 and TP = 8 > 2*8 = 16 workers
- \triangleright The arrival time of DT jobs is unpredictable
- ØThere exists a lot of fragmented idle GPUs, leading to low resource utilization

Existing Solution

Consolidation-First Placement

 \triangleright Elasticflow¹ (ASPLOS 23): allocate the resource at the scale of machine Resource oversubscription

Fragmentation-First Placement

 \triangleright HiveD² (OSDI 20): priority place placing workers in fragmented machines

Large comm. overhead

- 1. Gu D, Zhao Y, Zhong Y, et al. ElasticFlow: An elastic serverless training platform for distributed deep learning[C]//Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 2023: 266-280.
- 2. Zhao H, Han Z, Yang Z, et al. {HiveD}: Sharing a {GPU} cluster for deep learning with guarantees[C]//14th USENIX symposium on operating systems design and implementation (OSDI 20). 2020: 515-532.

A Motivating Example

 \triangleright Collective communication operations take multiple steps, where each step contains different communication pairs and amounts

> Workers in one DT job have different communication pattern.

A Motivating Example-Elasticflow

 \triangleright Consolidation placement to minimize the amount of cross-machine traffic

A Motivating Example-HiveD

 \triangleright Using fragmented machines to minimize the number of used machines

(a) Communication Pattern Example

A Motivating Example-Titan (Ours)

- \triangleright Consider the map of workers to GPUs according to collective communication algorithms
- \triangleright Avoid the use of idle machines

(a) Communication Pattern Example

No. of Machines $= 3$ Cross-machine Traffic = K

 (d) Titan (Ours)

Titan: Problem Formulation

Network Model

- \triangleright Machine set: $S = \{s_1, s_2, ..., s_{|S|}\}\)$, each with K GPUs
- ≻ Non-Idle machine set: S_f ⊂ S
- \triangleright Idle machine set: $S_n \subset S$

> Available bandwidth between machines s and $s' : P_{s,s'} \in \mathbb{Z}$

Communication Pattern

≻ Worker set: $N = \{n_1, n_2, ..., n_{|N|}\}$

> The traffic amount between worker pair (n, n') in phase $t : C_{n,n'}^t \in \mathbb{Z}$

Titan: Problem Formulation

- \triangleright Objective
	- **1. Minimize the number of Idle-machines**: reduce resource fragmentation
	- **2. Minimize the number of total machines**: reduce the amount of cross-machine traffic

- \triangleright Placement constraint
- \triangleright Resource constraint
- \triangleright Bandwidth constraint

$$
\min O_1 = \sum_{s \in S_n} y_s
$$

\n
$$
\min O_2 = \sum_{s \in S} y_s
$$

\n
$$
\sum_{s \in S} x_n^s = 1,
$$

\n
$$
\sum_{n \in N} x_n^s \le R_s,
$$

\n
$$
\sum_{n \in N} x_n^s \le R_s,
$$

\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'}, \quad \forall s, s' \in S, t \in T
$$

\n
$$
y_s \ge x_n^s,
$$

\n
$$
y_s \in \{0, 1\},
$$

\n
$$
\forall s \in S, n \in N
$$

\n
$$
\forall s \in S, n \in N
$$

\n
$$
\forall s \in S
$$

\n
$$
\forall s \in S
$$

\n(1)

Titan: Algorithm Design

 \triangleright Convert the problem into an equivalent maximization problem

 \triangleright So we can construct the submodular function for the greedy algorithm

$$
\min O_1 = \sum_{s \in S_n} y_s
$$
\n
$$
\min O_2 = \sum_{s \in S_n} y_s
$$
\n
$$
\max O_1 = C_{\max} - \sum_{s \in S_n} C(\mathcal{N}_s)
$$
\n
$$
\min O_2 = \sum_{s \in S} y_s
$$
\n
$$
\max O_2 = C_{\max} - \sum_{s \in S_n} C(\mathcal{N}_s)
$$
\n
$$
\sum_{s \in S} x_n^s = 1,
$$
\n
$$
\sum_{n \in N} x_n^s \le R_s,
$$
\n
$$
\forall s \in S
$$
\n
$$
\sum_{s \in S} x_n^s \le R_s,
$$
\n
$$
\forall s \in S, n \in N
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\forall s \in S, n \in N
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{s \in S} \sum_{n \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot x_{n'}^{s'} \cdot C_{n,n'}^t \le P_{s,s'},
$$
\n
$$
\sum_{n \in N} \sum_{n' \in N} x_n^s \cdot C_{n,n'}^t \le P_{s,n} \in
$$

Titan: Algorithm Design

 \triangleright Solve the converted problem with a **submodular-based greedy algorithm**

- Ø **Search the feasible worker set** for each machine to guarantee bandwidth constraint
- Ø **Merge the worker set with submodular function** to minimize the number of used idle machines
- Ø **Update and merge the worker set** to minimize the number of used machines

Algorithm 1 Search for Feasible Worker Set

- 1: Step 1: Initialization
- 2: Let feasible worker set $A(s) = \emptyset$ for machine s.
- 3: Let available worker set $N_c = N \mathcal{N}$.
- 4: Step 2: Iterative update feasible worker sets according to collective communication
- 5: Use $C_{f,f'}$ to denote the existing communication overhead between machines s and s' .
- 6: for $n \in N_c$ do
- for $n' \in \mathcal{N}$ do $7:$
- for $t \in T$ do 8:
- if $C_{n,n'}^t + C_{f,f'} \leq P_{s,s'}$ then $9:$
- $A(s) \leftarrow A(s) + n$ $10:$
- end if $11:$
- end for $12:$
- end for $13:$
- $14:$ end for
- 15: Output the feasible worker set $A(s)$ for machine s.

Algorithm 3 The Overall Algorithm

- 1: Step 1: Minimizing the Number of Deployed New **Racks**
- 2: Initiate $\mathcal{N}_s, \forall s \in S_n$ by randomly distributing workers.
- 3: Initiate $\Phi_n \leftarrow \emptyset$.
- 4: Calculate Φ_n on idle machine set S_n with Alg. 2.
- 5: Step 2: Minimizing the Total Number of Deployed **Racks**
- 6: Initiate $\mathcal{N}_s, \forall s \in S_f \cup \Phi_n$ by randomly distributing workers.
- 7: Initiate $\Phi \leftarrow \emptyset$.
- 8: Calculate Φ on machine set $S_f \cup \Phi_n$ with Alg. 2.
- 9: Step 3: Determining the Deployment of Workers
- 10: for $\mathcal{N}_s \in \Phi$ do
- 11: Set $x_n^s = 1, \forall n \in \mathcal{N}_s, s \in S$.

Titan: Algorithm Design

 \triangleright Solve the converted problem with a **submodular-based greedy algorithm**

- Ø **Search the feasible worker set** for each machine to guarantee bandwidth constraint
- Ø **Merge the worker set with submodular function** to minimize the number of used idle machines
- Ø **Update and merge the worker set** to minimize the number of used machines
- \triangleright Tight approximate ratio (1-1/e)
- Algorithm 2 Submodular-based Algorithm 1: Step 1: Initialization 2: Initiate $\mathcal{N}_s, \forall s \in S$ by randomly distributing workers. 3: Initiate $\Phi \leftarrow \emptyset$. 4: Step 2: Iterative Merging Worker Subsets 5: while $|\Phi| \leq K - 1$ do Set $tmp \leftarrow 0, opt \leftarrow 0$ $6:$ for $s \in S_n$ do $7:$ for $n \in \mathcal{N}_s - \Phi$ do $8:$ $tmp \leftarrow H(\Phi \cup \{n\})$ $9:$ if $tmp > opt$ then $10:$ $opt \leftarrow tmp, \mathcal{N}^* \leftarrow \mathcal{N}^* + \{n\}$ $11:$ end if $12:$ end for $13:$ end for $14:$ $\Phi \leftarrow \Phi + \mathcal{N}^*$ $15:$ Update the feasible worker sets based on the bandwidth $16:$ constraint of Eq. (5) with Alg. 1. 17: end while 18: Deploy the remaining workers on one machine (*i.e.*, $\Phi \leftarrow$
	- $\Phi + \{N \bigcup_{\mathcal{N} \in \Phi} \mathcal{N}\}.$

$$
\sum_{n \in \mathcal{N}_s} \sum_{n' \in \mathcal{N}_{s'}} C_{n,n'}^t \le P_{s,s'}, \forall s' \in S, t \in T
$$
 (5)

Evaluation: Setup

Simulation Topology

- \triangleright Fat-tree topology with 64 racks, each of which contains 8 machines
- \triangleright Each machine is equipped with 8 GPUs
- \triangleright All connected with 100Gbps links

Real-world Traces

- \triangleright Microsoft cluster: 2-month trace with 69742 jobs
- ØShanghai AI lab cluster: 6-month trace with 880740 jobs

Evaluation: Setup

Benchmark

- Ø **Elasticflow1** : consolidate the placed GPUs so that the job is allocated with the highest possible bandwidth between its workers
- Ø **HiveD2** : prioritize placing workers in fragmented machines to reduce the machine fragmentation of the cluster
- \triangleright **Tiresias**³: minimize the total network traffic and balance the network load across machines in the cluster, by profiling the characteristics of different models

3. Gu J, Chowdhury M, Shin K G, et al. Tiresias: A {GPU} cluster manager for distributed deep learning[C]//16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). 2019: 485-500.

Evaluation: Fragmentation Rate

 \triangleright Record the ratio of non-idle machines in the cluster, after a job arrives

Fig. 4: Machine Fragmentation Rate vs. Timestamp

Ø Titan reduces machine fragmentation rate by **38.1%**

Evaluation: Comm. Overhead

 \triangleright Use the HD algorithm and calculate the total communication overhead

Fig. 5: Communication Overhead vs. Timestamp

Ø Titan reduces communication overhead of the cluster by **76.4%**

Evaluation: Profit

Ø Profit relates to No. of jobs, price of the job, No. of used machines and the duration of each job (See the manuscript for details)

Fig. 6: Profit Rate vs. Timestamp

Fig. 7: Total Profit vs. Timestamp

Ø Titan improves the total profit by **41.2%~65X**

Goal

 \triangleright Minimize the resource fragmentation rate of GPU cluster with non-idle machine-aware worker placement

Challenges

- Ø Collective Communication constraint
- \triangleright Resource fragmentation limitation
- \triangleright Model a multi-subjective non-linear problem

Solution

 \triangleright Submodular-based greedy algorithm with a tight approximation ratio

[Thank you!](mailto:fangjin98@mail.ustc.edu.cn)

IEEE International Conference on Network F

Committee, Reviewers, Volur

My Advisors and Collaborat

Jin Fang fangjin98@mail.ustc.edu. www.fangjin.site