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Abstract—Distributed training (DT) has emerged as a solution
to address the growing computational resource demands of train-
ing large-scale machine learning models. To meet this need, major
cloud providers typically build GPU clusters to accommodate
DT jobs. Specifically, for an incoming DT job request, cloud
providers need to determine in which GPUs place workers (i.e.,
worker placement). Existing approaches usually place workers
on as few idle machines as possible to minimize communication
time. However, this scheme will lead to resource fragmentation
problem, which degrades the efficiency of the GPU cluster and
increases training costs for cloud providers.

In this paper, we propose Titan, a novel worker placement
scheme that mitigates the influence of resource fragmentation by
enhancing the utilization of non-idle machines. Titan formulates
a multi-objectives non-linear optimization problem that incor-
porates the collective communication constraint and proves its
NP-hardness. To solve the problem, Titan presents an effective
submodular-based greedy algorithm with a tight approximation
ratio (1 − 1

e
). We evaluate Titan with a large-scale simulation

employing real-world job traces and a small-scale testbed con-
sisting of 8 servers with 32 logical GPUs. Experimental results
show that Titan can achieve near-optimal training throughput
while improving the efficiency of the cluster by 74.9% compared
to the state-of-the-art solutions.

Index Terms—Distributed Training, Worker Placement, Data-
center Network, GPU Cluster

I. INTRODUCTION

The demand for training machine learning (ML) models
has increased dramatically in recent years due to the growing
complexity of modern ML applications (e.g., real-time trans-
lation [1], text summarization [2] and artificial intelligence
agents [3]). To satisfy the massive computing requirements,
distributed training (DT) has emerged as a promising solution.
One DT job consists of multiple computing nodes (workers)
to train part of models and synchronize the model iteratively
[4]–[6], potentially consuming hundreds or even thousands of
GPUs [7]. To this end, mainstream cloud providers build large-
scale GPU clusters to serve DT jobs [7]–[9]. As a result, it is
important for cloud providers to decide on which GPUs place
workers of the DT job (i.e., worker placement).

Existing worker placement solutions focus on minimizing
job completion time (JCT) by reducing the amount of cross-
machine traffic [10], [11], or bandwidth contention [12]–[14].
Firstly, bandwidth among machines is relatively limited (e.g.,
100Gbps link) compared to the bandwidth within a machine
(e.g., 1.8Tbps NVlink [15]). Therefore, some studies [10], [11]

place workers on the least number of machines to minimize
cross-machine traffic amount and improve DT performance.
Secondly, workers need to perform collective communication
operations during the training for parameter synchronization.
These operations (e.g., allreduce or allgather) usually involve
workers communicating simultaneously, leading to traffic con-
gestion. To address this, some works [12], [13], [16] place
workers of a DT job based on their communication patterns
and machine network topology, to effectively reduce band-
width contention.

Due to the unpredictability of job arrival and completion,
these schemes may increase the resource fragmentation rate in
the GPU cluster. Similar to work [17], we define fragmented
resources as machines that are not fully utilized (i.e., the num-
ber of idle GPUs is less than the total number of GPUs). High
resource fragmentation will incur the ability of serving large-
scale DT jobs in the GPU cluster, since the manager can not
allocate enough contiougus GPUs in idle machines. We give
an example to illustrate the impact of fragmentation. Assuming
the number of workers of DT jobs varies from 1 to 16, and
each machine is equipped with 8 GPUs. The cluster has three
machines where two of them have been placed 4 workers
each. Under this scenario, when a 16-worker job comes, it
can not be scheduled for worker placement with the objective
of minimizing the cross-machine traffic. The reason is that
there are not enough idle machines (i.e., 2 idle machines) for
worker placement. Due to resource fragmentation, this job may
suffer long queueing delays, even if there are enough number
of idle GPUs. From the above discussion, we can see that a
worker placement scheme decreasing resource fragmentation
is in urgent need.

To this end, we propose Titan, which prioritizes non-
idle machines for worker placement to reduce the resource
fragmentation of the GPU cluster. The core of Titan is two
objectives. Our primary objective is to minimize the number
of used idle machines when placing workers. By doing so,
we intend to improve the utilization of non-idle machines
while saving more idle machines. Our secondary objective is
to minimize the total number of used machines (both idle and
non-idle machines). In this way, we consolidate workers of a
DT job to minimize the cross-machine traffic, so that we can
guarantee high training speed for DT jobs.

However, it is non-trivial to realize Titan. First, the idle
GPUs of machines are often highly fragmented in GPU979-8-3503-0322-3/23/$31.00 ©2024 IEEE
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Fig. 1: The first subplot shows the procedure of the halving-doubling (HD) algorithm under 4 workers. We denote the total size of the
parameter as K. The bidirectional arrows represent the corresponding communication pairs and the thickness of the lines distinguishes the
communication volume. From the second to fourth subplots, we present the placement results of Elasticflow, HiveD and Titan under a
4-machine cluster. Each machine is equipped with 4 GPUs, denoted by rectangles and the gray rectangles denote non-idle GPUs.

clusters [18], making it difficult to decide whether to use GPUs
in idle or non-idle machines for efficient worker placement.
Second, the communication pattern of collective commu-
nication operations varies depending on the corresponding
communication algorithms (see Sec. II-B for details). We need
to consider different communication patterns when deciding
the worker placement to avoid traffic congestion. To overcome
the above challenges, we formulate the resource-aware worker
placement problem and present a submodular algorithm. The
main contributions of this paper are summarized as follows:

1) We design Titan, which performs non-idle machine-
aware worker placement to optimize the resource frag-
mentation problem and improve non-idle machine utiliza-
tion for cloud providers.

2) We formulate the worker placement problem as a multi-
objective non-linear optimization problem, named NIMP
problem, and prove its NP-hardness.

3) We present a submodular-based solution. We prove that
our algorithm is neal-optimal and bounded by a tight
approximation factor of (1− 1

e ).
4) We conduct a large-scale simulation using real-world job

traces and a small-scale testbed based on 8 servers. Both
experimental and simulation results show that Titan can
achieve near-optimal training throughput and improve the
average profit rate by up to 74.9% compared with the
state-of-the-art solutions.

II. BACKGROUND AND MOTIVATION

A. Current Defragmentation Solutions and Limitations

Resource fragmentation has been widely observed in pro-
duction clusters that run diverse DT jobs [8], [19], [20].
For example, in ByteDance, training jobs experience long
queuing time with an average of over 3000s, due to the
resource fragmentation problem [20]. Moreover, fragmented
resources also increase the management cost of the GPU
cluster, since the cluster manager needs to migrate small jobs
to free up enough continouse GPUs for large-scale DT jobs.

This problem has become a thorny point in reducing the total
cost of GPU clusters.

Currently, several DT worker placement solutions [10],
[11], [21], [22] are proposed to address this problem. One
intuitive solution is to prioritize placing workers in fragmented
machines [21]. However, since the fragmented GPUs are
typically spread across multiple machines, and workers need to
communicate frequently, this approach will lead to substantial
cross-machine traffic, resulting in communication bottlenecks.
Alternatively, some schemes overprovision resources during
DT worker placement to avoid resource fragmentation [11],
[22]. For example, Elasticflow [11] restricts the number of
workers of each job to be a power of two. If one job
does not satisfy this constraint (e.g., 5 workers), the cluster
scheduler will allocate additional idle GPUs to avoid resource
fragmentation (e.g., allocate 8 GPUs). Though this scheme
guarantees no resource fragmentation, it does not improve
cluster utilization.

B. A Motivating Example

In this section, we give an example to show the advan-
tages and disadvantages of the state-of-the-art solutions, which
motivates our research. We first illustrate the procedure of
communication operations, then show the performance of
existing placement algorithms.

Collective communication algorithms. In practice, param-
eter synchronization are performed by collective communica-
tion operations (e.g., allreduce or allgather). To mitigate the
communciation overhead, different collective communication
algorithms (e.g., ring-allreduce [23] in NCCL [24], or halving-
doubling [25] in ACCL [26]) are proposed for suiting problem
scales and network topologies. Specifically, one collective
communication algorithm usually takes several stages, where
each stage consists of several disjoint worker sets for com-
munication. The worker sets change in each stage so that all
workers can communicate with each other after all stages and
synchronize the parameters.



3

Existing placement schemes. Consider a distributed training
task with 4 workers, where the size of parameters is K.
The communication procedure of the halving-doubling (HD)
algorithm [25] under 4 workers (W1-W4) is shown in Fig.
1(a). In this example, it takes 4 stages to finish, and the
traffic amounts of communication pairs are K

2 , K
4 , K

4 and K
2 ,

respectively. Supposing there are 4 machines in a GPU cluster,
where the number of idle GPUs is 4, 3, 2, and 1, respectively.
All machines are connected with 100Gbps links.

Firstly, Elasticflow [11] places workers in as few as possible
machines, and the placement result is shown in Fig. 1(b). With
this scheme, all workers are placed in Machine 1. The cluster
launches 4 machines and there is no cross-machine traffic.

Secondly, HiveD [21] prioritizes utilizing scattered idle
GPUs for worker placement. In this case, it will place workers
W1-W3 in Machine 2 and worker W4 in Machine 4. As a
result, Machines 1 and 4 are fully utilized, and the number
of launched machines is 3. However, since W4 needs to
communicate with W2 and W3, the amount of cross-machine
traffic is (K2 + K

4 ) · 2 = 3K
2 .

C. Our Intuition

From the above example, we observe that both worker
placement schemes have advantages and disadvantages. Elas-
ticflow minimizes cross-machine communication by placing
workers in as few as possible machines while ignoring the
resource fragmentation problem. HiveD utilizes fragmented
GPUs for worker placement which incurs a massive cross-
machine traffic and becomes the bottleneck of the DT job. A
question immediately following the above discussion is how
to reduce the fragmentation of the GPU cluster by worker
placement with the performance guarantee?

We notice that during the allreduce operation, the traffic
amount between workers is decided by the corresponding
algorithm. Therefore, as shown in Fig. 1(c), we place W1

and W3 in Machine 2, and W2 and W4 in Machine 3. The
total amount of cross-machine traffic is (K4 + K

4 ) · 2 = K,
produced by {W1,W2} and {W3,W4}. In this way, we reduce
the cross-machine traffic by 33.3%, compared with HiveD.
Moreover, we reduce the number of launched machines by
25%, compared with Elasticflow. Motivated by this example,
we design a novel worker placement scheme utilizing non-idle
machines, called Titan.

III. PROBLEM FORMULATION

A. Network Model

GPU cluster. In practice, one GPU cluster is composed of
a set of machines S =

{
s1, s2, . . . , s|S|

}
, each of which is

equipped with K GPUs. These machines are interconnected
through the datacenter network. Let Ps,s′ ∈ Z denote the
available bandwidth between machines s and s′. Considering
that there may be other distributed training tasks occupying
GPUs in the cluster, we classify these machines into two
categories: non-idle machine and idle machine, based on the
number of idle GPUs. We use Sf ⊆ S to denote the set of
non-idle machines, where some GPUs in machine s ∈ Sf

TABLE I: Important Notations
Notations Semantics
N the set of workers
S the set of machines
Sf the set of non-idle machines
Sn the set of idle machines

T
the total number of phases of the allreduce
communication

Ct
n,n′

the traffic amount between workers n and n′

in phase t

Ps,s′ the bandwidth between machines s and s′

Rs the number of idle GPUs of machine s

xs
n

whether worker n is placed on machine s
or not

ys whether machine s is used or not

are occupied (i.e., Rs < K). We use Sn ⊆ S to denote
the set of idle machines, in which all GPUs are idle (i.e.,
Rs = K,∀s ∈ Sn). Obivously, Sf ∪ Sn = S.

Communication pattern. A distributed training task par-
titions the dataset into multiple sub-datasets to train by a
set of workers N =

{
n1, n2, . . . , n|N |

}
(i.e., data parallel

training). In each epoch, workers need to perform collective
communication operations according to corresponding algo-
rithms to synchronize the model. The communication oper-
ation usually requires T phases, with each phase consisting
of multiple worker communication pairs. The traffic amount
between worker communication pair (n, n′) in phase t ∈ T
is represented by Ct

n,n′ ∈ Z. Based on this definition, we
can simulate the communication pattern of different collective
communication algorithms.

B. Problem Formulation

This section gives the formulation of the non-idle machine-
aware worker placement (NIMP) problem. To launch a dis-
tributed training task, we need to place workers on the corre-
sponding GPUs. Let xs

n ∈ {0, 1} represent whether worker n
is placed on the GPU of machine s, or not. In our settings,
we assume that one worker will occupy one GPU exclusively
(i.e., we do not consider the situation of GPU sharing). Let
ys ∈ {0, 1} represent whether machine s is used by the DT
job, or not. We summarize the notations in Table I.

Constraints. We mainly consider the following constraints.
1) Placement Constraint: Each worker should be placed on

one and only machine. That is,
∑

s∈S xs
n = 1,∀n ∈ N .

2) Resource Constraint: For each machine, the number of
placed workers should not exceed the number of its idle
GPUs. It follows

∑
n∈N xs

n ≤ Rs,∀s ∈ S.
3) Bandwidth Constraint: To avoid network congestion,

the traffic amount of each worker communication pair
should not exceed the bandwidth between placed ma-
chines, which means

∑
n∈N

∑
n′∈N xs

n · xs′

n′ · Ct
n,n′ ≤

Ps,s′ ,∀s, s′ ∈ S, t ∈ T .
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Objectives. We have two objectives. The primary objective is
to minimize the number of idle machines used to reduce the
resource fragmentation of the GPU cluster. While achieving
the first objective, the second objective (i.e., minimizing the
total number of used machines) should be pursued to avoid
cross-machine traffic as well as improve the training perfor-
mance. The problem can be formulated as follows.

min O1 =
∑
s∈Sn

ys

min O2 =
∑
s∈S

ys

S.t.



∑
s∈S

xs
n = 1, ∀n ∈ N∑

n∈N

xs
n ≤ Rs, ∀s ∈ S∑

n∈N

∑
n′∈N

xs
n · xs′

n′ · Ct
n,n′ ≤ Ps,s′ , ∀s, s′ ∈ S, t ∈ T

ys ≥ xs
n, ∀s ∈ S, n ∈ N

xs
n ∈ {0, 1}, ∀s ∈ S, n ∈ N

ys ∈ {0, 1}, ∀s ∈ S
(1)

The first set of equations represents the placement con-
straint. The second set of inequalities indicates the resource
constraint. The third set of inequalities shows the bandwidth
constraint. The fourth set of inequalities means that one
machine will be used if one worker is placed on its GPU.
Our first optimization goal is to minimize the number of used
idle machines, and the second objective is to minimize the
total number of used machines.

Discussion. Ideally, the cloud providers want to achieve the
least job completion time given the fixed number of machines.
Due to the complexity of DT jobs and physical environment
of the cluster, it is diffcult to model the job completion time
accurately. Therefore, we turn to focus on the communication
ovehead constraint in Eq. 1. We believe it is rational for the
following reasons.

One DT job can be splitted into local training phase and pa-
rameter synchronize phase. For the local training phase, since
we consider the scenario that one worker exclusively occupies
one GPU, the training time is relatively stable, regradless of
the selection of GPUs. In the parameter synchronize phase,
the main communication traffic is incurred by communication
operations. Since the bandwidth inside a machine is usually
seen as sufficient, we can reduce the parameter synchronize
time by restricting the cross-machine traffic. In this way, we
reduce the total job completion time.

Theorem 1: The NIMP problem is NP-hard.
Proof: We prove the NP-hardness by reducing it to the

Multiple Knapsack Problem (MKP) [27], a well-known NP-
hard problem. If we ignore the bandwidth constraint and the
first objective, our NIMP problem can be seen as Multiple
Knapsack Problem, where each machine s can be seen as a
knapsack with resource capacity Rs and each worker n can be
viewed as an item with a weight of 1. Under this circumstance,

the goal of the problem is to place workers in different
machines to maximize machine utilization while satisfying the
resource constraints of all the machines. Since the Multiple
Knapsack Problem is a special case of our problem, we can
conclude that the NIMP problem is NP-hard.

The optimization formulation of worker placement with var-
ious constraints in Eq. (1) results in a complex multi-objectives
non-linear optimization problem that is computationally hard.
Despite using a state-of-the-art LP solver (e.g., Gurobi [28]),
it still needs an order of hours to solve even for relatively
small scales [29]. Thus, designing an efficient algorithm for
this problem is challenging.

IV. ALGORITHM DESIGN

A. Preliminaries

In general, deploying workers in K = |S| machines can
be seen as dividing the worker into K disjoint sets, denoted
as {N1,N2, ...,N|S|}, where workers in Ns are deployed
in machine s. We define the set of remaining machines Sr
for machines that are not deployed by any workers (i.e.,
Ns = ∅,∀s ∈ Sr). The total number of used machines can
be calculated as

∑
s∈S C(Ns), where

C(Ns) =

{
1 s ∈ S − Sr
0 s ∈ Sr

(2)

Obviously, the maximum number of used machines of the
total cluster is Cmax = max {|S| , |N |}. With these notations,
we remove the variable ys and convert the objective O1 into
maximizing the number of remaining machines, as shown in
Eq. (3)

max O1 = Cmax −
∑
s∈Sn

C(Ns)

max O2 = Cmax −
∑
s∈S

C(Ns)

S.t.



∑
s∈S

xs
n = 1, ∀n ∈ N∑

n∈N

xs
n ≤ Rs, ∀s ∈ S∑

n∈N

∑
n′∈N

xs
n · xs′

n′ · Ct
n,n′ ≤ Ps,s′ , ∀s, s′ ∈ S, t ∈ T

xs
n ∈ {0, 1}, ∀s ∈ S, n ∈ N

(3)
To efficiently solve Eq. (3), we propose a submodular-based

algorithm in the following.

B. Algorithm Description

The core idea of our algorithm is through efficient compu-
tations of a submodular set function H , which defines the
maximum number reduction by merging the workers from
several disjoint sets. We define the submodular set function
H as follows, and we will prove that the function H is
submodular in Section IV-C.

Definition 1: Given the set N = {N1,N2, . . . ,Nk}, which
contains k disjoint subsets of worker set N , the reduction of
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Algorithm 1 Search for Feasible Worker Set
1: Step 1: Initialization
2: Let feasible worker set A(s) = ∅ for machine s.
3: Let available worker set Nc = N −N .
4: Step 2: Iterative update feasible worker sets according

to collective communication
5: Use C∫ ,∫ ′ to denote the existing communication overhead

between machines s and s′.
6: for n ∈ Nc do
7: for n′ ∈ N do
8: for t ∈ T do
9: if Ct

n,n′ + C∫ ,∫ ′ ≤ Ps,s′ then
10: A(s)← A(s) + n
11: end if
12: end for
13: end for
14: end for
15: Output the feasible worker set A(s) for machine s.

deployed machine number achieved by merging the worker
subset from N is defined as:

H(N ) =
∑

Ni∈N
C(Ni) + C(N −R)− C(N) (4)

where R is the set of workers that can cover all the sets in
N (i.e., R =

⋃
Ni∈N Ni).

To maintain the bandwidth constraints of the machine s, we
only focus on the worker set Ns ⊆ N satisfying Eq. (5).∑

n∈Ns

∑
n′∈Ns′

Ct
n,n′ ≤ Ps,s′ ,∀s′ ∈ S, t ∈ T (5)

Searching the feasible worker sets. We call the worker
sets satisfying Eq. (5) as feasible worker sets for machine
s. The feasible worker sets of machine s can be constructed
efficiently by performing a depth-first search [30], [31] on
used machines. However, since the depth-first search will incur
high time complexity (i.e., O(N !)), we propose a polynomial
time complexity algorithm to search the feasible worker set
for machine s (Alg. 1) in this paper.

At the start of the algorithm, we initiate the feasible worker
sets of machine s as A(s) = ∅, and the available worker set
with the workers that are not placed yet (i.e., Nc = N − N .
Then, we iteratively compute the communication overhead
over the available worker set to check if they will exceed
the bandwidth constraint of the corresponding machines.
Specifically, for each available worker n ∈ Nc, we check
if it performs communication at any stages of the collective
communication operation to workers that have been placed.
We stop searching if there exists one communication pair that
exceeds the bandwidth constraint. If all communication pairs
of worker n satisfy the bandwidth constraint, we will add it
to the feasible worker set.

Given feasible worker sets, we can generate the placement
scheme with a maximum number of remaining machines using

Algorithm 2 Submodular-based Algorithm
1: Step 1: Initialization
2: Initiate Ns,∀s ∈ S by randomly distributing workers.
3: Initiate Φ← ∅.
4: Step 2: Iterative Merging Worker Subsets
5: while |Φ| ≤ K − 1 do
6: Set tmp← 0, opt← 0
7: for s ∈ Sn do
8: for n ∈ Ns − Φ do
9: tmp← H(Φ ∪ {n})

10: if tmp > opt then
11: opt← tmp, N ∗ ← N ∗ + {n}
12: end if
13: end for
14: end for
15: Φ← Φ+N ∗

16: Update the feasible worker sets based on the bandwidth
constraint of Eq. (5) with Alg. 1.

17: end while
18: Deploy the remaining workers on one machine (i.e., Φ←

Φ+ {N −⋃
N∈ΦN}).

a submodular-based algorithm (Alg. 2). At last, we invoke the
Alg. 2 twice over idle and non-idle machine sets to achieve
two objectives. The algorithm is formally described in Alg. 3.

Minimizing the number of used machines. We show how
to minimize the number of used machines for a given machine
set. The algorithm consists of two steps. In the first step, we
initiate feasible worker sets for each machine, and start with an
empty set Φ. In the second step, we try to find a disjoint worker
subset to maximize the number of remaining machines. To this
end, we loop through the feasible worker set Ns for machine
s ∈ Sn and find the machine s with maximum function value
(i.e., argmaxs∈Sn

H(Φ∪Ns)). We add the worker setNs with
the maximum submodular function value into Φ. After that,
we update the feasible worker sets for each machine based on
the current worker deployment. The algorithm performs K−1
iterations so the set Φ will contain K − 1 worker sets. The
remaining workers will be placed on one idle machine.

Generating the final scheme. We adopt Alg. 2 in different
machine sets to satisfy two objectives of Eq. (1) in Alg. 3.
The algorithm consists of three steps. If we only consider
deploying workers on idle machines (i.e., s ∈ Sn), the optimal
deployment scheme will use a minimum number of machines.
To this end, in the first step, we run Alg. 2 over the idle
machine set Sn, and determine the set of used machines Φn.
In the second step, we try to replace idle machines deployed
with workers with the non-idle machine, to achieve the second
objective (i.e., minimize the number of used idle machines).
We construct the machine set S′ = Sf ∪Φ. Then we run Alg.
2 over machine set S′ to determine the deployed machine set
Φ. In the third, we output the deployment decisions of workers
according to the machine set Φ.
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Algorithm 3 The Overall Algorithm
1: Step 1: Minimizing the Number of Deployed New

Racks
2: Initiate Ns,∀s ∈ Sn by randomly distributing workers.
3: Initiate Φn ← ∅.
4: Calculate Φn on idle machine set Sn with Alg. 2.
5: Step 2: Minimizing the Total Number of Deployed

Racks
6: Initiate Ns,∀s ∈ Sf ∪ Φn by randomly distributing

workers.
7: Initiate Φ← ∅.
8: Calculate Φ on machine set Sf ∪ Φn with Alg. 2.
9: Step 3: Determining the Deployment of Workers

10: for Ns ∈ Φ do
11: Set xs

n = 1,∀n ∈ Ns, s ∈ S.
12: end for

C. Performance Analysis

We give the definition of submodular as follows and prove
that Eq. (4) is submodular.

Definition 2: (Submodular [32]): Given a finite set E, a
real-valued function z on the set of subsets of E is called
submodular if z(S ∪ {e}) − z(S) ≤ z(S′ ∪ {e}) − z(S′) for
all S′ ⊆ S ⊆ E and e ∈ E − S.

Lemma 2: Given the set U as the power set of N , the
function H defined in Eq. (4) is submodular on U .

Proof: Without loss of generality, we consider an arbitrary
set Φ ⊆ U and an arbitrary set M ⊆ N . Suppose that M does
not intersect with other sets in Φ (i.e., M ∩Φ′ = ∅,∀Φ′ ∈ Φ).
Then, we have

H(Φ∪M)−H(Φ) = C(M)+C(N−M−R)−C(N−R) (6)

Given an arbitrary subset Φ′ ⊆ Φ, it also follows

H(Φ′∪M)−H(Φ′) = C(M)+C(N−M−R′)−C(N−R′)
(7)

Note that, C(M)+C(N −M −R)−C(N −R) represents
the reduction of deployed machine number by merging two
subsets M and N −M − R into set N − R. Since Φ′ is the
subset of Φ, N −R is also the subset of N −R′ accordingly,
we obtain C(N −R) ≤ C(N −R′). Combining Eqs. (6) and
(7), we know that

H(Φ ∪M)−H(Φ) ≤ H(Φ′ ∪M)−H(Φ′) (8)

According to Definition 2, we show that the set function H
is submodular.

We give a well-known conclusion of the approximation ratio
of the submodular function as a lemma to help the analysis.

Lemma 3: For a real-valued non-decreasing submodular
function z(S) on U , the optimization problem max

S⊆U
{z(S) :

S ⊆ U} can reach an approximation factor of (1 − 1
e ) if the

algorithm performs greedily [32].
Now we analyze the approximation performance of our

proposed algorithm based on the above lemmas.

Theorem 4: For the first objective, our proposed algorithm
can achieve a (1− 1

e ) approximation factor.
Proof: We first prove that the function H is non-

decreasing. Supposing that there are two machines s1 and s2
and workers are split into two subsetsM1 andM2, indicating
that workers are deployed in machines s1 or s2 respectively.
There are three conditions: 1) Workers are all deployed in
machine s1, then C(M1) = 1, C(M2) = 0; 2) Workers are
all deployed in machine s2, then C(M1) = 0, C(M2) = 1;
3) Workers are deployed in machines s1 and s2, we have
C(M1) = 1, C(M2) = 1. If we merge two worker subsets
into one worker set (i.e., deploying all workers in one ma-
chine), we have C(M1 +M2) = 1. According to Eq. (6), by
applying M1 = M and M2 = N −M −R, we have

H(Φ ∪M)−H(Φ) ≥ 0 (9)

Thus, the function H is non-decreasing. In Lemma 2, we
have proved that the function H is submodular. Given the fact
that H is non-decreasing and submodular, according to Lemma
3, our proposed algorithm can reach a (1−1/e) approximation
factor for the problem of Eq. (3).

Theorem 5: For the second objective, our proposed algo-
rithm can achieve a (1− 1

e ) approximation factor.
Proof: In the second step of Alg. 3, we construct the

machine set with non-idle machines and part of idle machines
(i.e., Φn). In Theorem 4, we have proved that function H is
a real-valued non-decreasing submodular function. According
to Lemma 2, we can find a machine set with a (1 − 1/e)
approximation factor for the second objective of Eq. (1).

Nemhauser [33] proved that any algorithm evaluating the
submodular function at a polynomial number of sets will not
obtain an approximation guarantee better than (1−1/e), unless
NP = P . Thus, we obtain the following Theorem.

Theorem 6: The problem in Eq. (3) does not admit a
polynomial-time algorithm with approximation ratio 1−1/e+ϵ
unless NP = P , where ϵ is an arbitrary positive constant.

Theorem 7: The time complexity of Alg. 3 is O(2 · |S|2 ·
|N | · T ).

Proof: The main time complexity is contributed by the
second step of Alg. 2. We run K = |S| iterations to merge the
worker subsets. In each iteration, we need to update the feasi-
ble worker set using Alg. 1. We should note that the number of
feasible sets for each machine may be exponential. However,
the work [31] has shown that a polynomial number of feasible
sets is enough for performance optimization. To achieve the
trade-off optimization between algorithm complexity and net-
work performance, we only construct the polynomial number
of feasible workers for each machine with Alg. 1. In the worst
case, we iterate all workers at one time and check all stages of
collective communication algorithm. So the time complexity
of Alg. 1 is O(|N |T ). Under this condition, the function H
is calculated O(K |N |T ) times in each iteration. As a result,
the time complexity of Alg. 2 reaches O(|S|2 · |N | ·T ). Since
we run Alg. 2 twice, the final time complexity of Alg. 3 is
O(2 · |S|2 · |N | · T ).
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V. PERFORMANCE EVALUATION

In this section, we evaluate Titan with testbed and simula-
tion experiments and highlight our findings as follows:

• By utilizing the non-idle machines, Titan reduces the
number of used machines by up to 47.9% (Exp#1) and the
machine fragmentation rate by 38.1% (Exp#2), compared
with benchmarks.

• By considering collective communication pattern, Titan
reduces the communication overhead by 40.6%-76.4%
(Exp#3) and increase the average profit rate by 22.7%-
12× (Exp#4), compared with the existing solutions.

• By performing utilization-aware worker placement, Titan
can reduce the machine hour by 29.7% compared with
other alternatives (Exp#5) .

• Titan can achieve the near-optimal training performance
(Exp#6) and communication time (Exp#7) compared with
state-of-the-art solutions.

A. Experimental Setup

Metrics. We adopt the following metrics for performance
comparison: (1) number of used machines; (2) total machine
hour; (3) average machine fragmentation rate; (4) average
profit rate (5) training throughput; (6) time-to-accuracy.

In the simulation, we calculate the number of machines
deployed by at least one worker as number of used machines.
We measure the number of launched machines multiplied by
training time as the total machine hour. The shorter the total
machine hour, the better. We define the machine fragmentation
rate of as the ratio of the number of idle GPUs to the
number of total GPUs in a machine and calculate the average
machine fragmentation rate with the average value of machine
fragmentation rate of machines at a given time. At last, we
define the average profit rate as the K·P

N ·T at a given time, where
K, P , N and T denote the number of jobs, price of the job,
number of used machines and duration of jobs, separately. In
practice, tenants pay cloud providers for the DT jobs, and the
price of a job is usually related to its complexity (e.g., number
of workers, training duration).

In terms of the training performance, we measure the
average number of processed samples (e.g., images) per second
as training throughput and record the time and test accuracy
of each epoch as time-to-accuracy in the testbed.

Benchmarks. We compare Titan with three benchmarks. The
first benchmark is Elasticflow [11], which performs best-fit
placement scheme. Specifically, Elasticflow will search servers
in which the number of idle GPUs is closest to the number of
workers of the DT job. This scheme will consolidate the job’s
GPUs so that the job is allocated with the highest possible
bandwidth between its workers. However, it will increase
the machine fragmentation rate [11]. The second one, called
HiveD [21], tries to utilize fragment GPUs in the cluster first,
so the workers of a job will distributed among multiple servers.
It reduces the machine fragmentation rate of the cluster,
however, may introduce a large amount of communication
overheads. The third solution is Tiresias [10]. The goal of

Tiresias is to minimize the total network traffic and balance
the network load across machines in the cluster. Specifically,
Tiresias profiles the popular models and identifies whether
their training performance is sensitive to consolidation. As
a result, it performs consolidation placement or distributes
workers to multiple servers according to model sensitivity.

B. Simulation Settings and Results

Settings. Our simulations are implemented on a physical
server equipped with an Intel Core i9-10900 processor and
64GB RAM. We simulate a cluster with fat-tree topology
[16], which is widely used in modern datacenter networks.
Specifically, the topology contains 64 racks, where each rack
contains 8 machines. In total, there are 256 edge switches, 256
aggregation switches and 64 core switches. All components
are connected with 100Gbps links. We assume each machine is
equipped with 8 GPUs. After placing workers in machines, we
simulate the cross-machine traffic based on the communication
patterns of the HD allreduce algorithm.

Workloads. We adopt two real-world DT job arrival traces in
the simulation. The first is a two-month trace [11] containing
69742 jobs collected from 10 Microsoft clusters. The cluster
size ranges from 164 GPUs to 2783 GPUs. The second is a
six-month trace [34] containing 880740 jobs collected from
Shanghai AI lab, where 470497 jobs are deployed in GPUs.
This trace is a mixure of short-term and long-term jobs. Each
record has information about job id, submission time, number
of GPUs, and duration. Since Tiresias needs the model type for
worker placement, similar to work [11] we randomly choose
a DNN model for each job record. Although some traces [35]
contain the model type of jobs, they are limited in the scale
and number of jobs. Besides, considering that the arrival jobs
is unpredictable in practice, we eventually choose the above
traces and randomly assign a model type for each job.

Simulation workflow. At the start, we let all machines in the
cluster be idle. Then, for each arrived job, we will decide the
GPU allocation for worker placement and update the simulated
timestamp. We maintain a list of current jobs and check if
there are jobs finished at the latest timestamp. If there are, we
will release its occupied GPUs for the incoming jobs. Since
different placement schemes may influence the communication
time and job duration, we calculate the communication time
of each job according to placement results and add the bias
to the corresponding job durations. Specifically, we obtain the
initial job duration from the trace and add the communication
time of different algorithms to it.

We iteratively calculate the metrics, such as the number of
used machines, and the results are shown in Figs. 2-7. For ease
of reading, we add dotted horizontal lines in some figures to
show the average value of the corresponding metric.

(Exp#1) Comparison on number of used machines. We
consider machines placed with at least one worker as used
machines. We monitor the number of used machines as the job
arrives, and the results are shown in Figs. 2-3. Fig. 2 shows that
Titan utilizes a smaller number of machines compared with
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Fig. 2: No. of Used Machines vs. Timestamp
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Fig. 3: Machine Hour vs. Timestamp
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Fig. 4: Machine Fragmentation Rate vs. Timestamp
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Fig. 5: Communication Overhead vs. Timestamp
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Fig. 6: Profit Rate vs. Timestamp
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Fig. 7: Total Profit vs. Timestamp

Elasticflow and Tiresias and a similar number of machines
with HiveD. In Fig. 3, we further record the machine hour
in the cluster, and Titan costs the least machine hour. For
example, in Fig. 2(a), the average number of used machines
of Titan, HiveD, Elasticflow, and Tiresias are 174, 168, 334,
and 207, respectively. Titan, HiveD, Elasticflow, and Tiresias
are 174, 168, 334, and 207, respectively. Titan reduces the
number of used machines by 47.9% and 15.9%, compared
with Elasticflow and Tiresias, respectively. Compared with
HiveD, Titan uses 4% more machines, since HiveD prefers
split and place workers on fragmented GPUs.

(Exp#2) Comparison on machine fragmentation rate. This
set of evaluations investigates the resource utilization of the
GPU cluster. Specifically, for machines placed more than
one worker, we calculate the machine fragmentation rate as
No. of occupied GPUs
No. of equipped GPUs . We calculate the average machine fragmen-
tation rate of all used machines at a given timestamp and plot
the results in Fig. 4. From Fig. 4, we can see that, Elasticflow
always achieves the highest machine fragmentation rate, and
Titan keeps a relatively low machine fragmentation rate. For
instance, in Fig. 4(b), the average machine fragmentation rate
of Titan, HiveD, Elasticflow and Tiresias is 11.7%, 10%,
38.1% and 19.4%, respectively. The reason is that Titan will
try to place workers in machines with fragmented GPUs
rather than idle machines, therefore keeping the machine

fragmentation rate low.

(Exp#3) Comparison on communication overhead. In
this set of experiments, we measure the total communication
overhead of workers at the given time of four benchmarks.
Specifically, we assume workers of a DT job perform allreduce
via the HD algorithm. Since the communication pattern is
known, we can obtain the set of worker communication pairs.
Considering that, in practice, GPUs inside a machine are
connected with sufficient bandwidth, we mainly focus on
cross-machine communication here, and the communication
overhead is shown in Fig. 5. We can see that, Elasticflow keeps
the least communication overhead and Titan maintains the
second least overhead. In Fig. 5(a), the communication over-
head of Titan, Tiresias, and HiveD are 1.65GB, 2.78GB, and
7.03GB, respectively. The results show that Titan can reduce
the communication overhead by 40.6% and 76.4%, compared
with Tiresias and HiveD, respectively. The reason is that,
when placing the workers, Titan considers the communication
pattern among workers, and makes sure the communication
amount will not exceed the bandwidth constraint.

(Exp#4) Comparison on profit rate. This set of experiments
is conducted to illustrate the profit rate enhancement of Titan.
Once a job arrives, we decide its worker placement and
calculate the profit rate at this timestamp. We also accumulate
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Fig. 8: Worker Placement Results of All Solutions

the profit rate of all timestamps as the total profit. The
results are shown in Figs. 6-7. It shows that Titan achieves
the highest average profit rate among other alternatives. For
example, in Fig. 6(b), Titan achieves a profit rate of 314, while
that of Elasticflow, Tiresias and HiveD are 256, 71 and 24,
respectively. Titan improves the profit rate by 22.7%, 3.42×
and 12×, compared with Elasticflow, Tiresias and HiveD,
respectively. In terms of the total profit, when simulating Trace
1, Titan can improve the total profit by 41.21%, 316%, and
65×, compared with other alternatives. The reason is that,
Titan uses as little number of idle machines as possible,
and reduces the communication overhead by considering the
allreduce communication constraint. Therefore, Titan reduces
the value of N and T , to improve the average profit rate.

Discussion about the impact of characteristics of job traces.
In general, the effectiveness of job placement algorithms will
be decided by the characteristics of job traces. Specifically, if
jobs arrive at the cluster in a relatively stable pattern (similar
job durations and arrival intervals), the machine fragmenta-
tion rate will remain stable. And different algorithms only
affect the value of the machine fragmentation rate. If the job
trace contains a mixture of short-term and long-term jobs,
consolidation placement algorithms such as Elasticflow may
cause machine fragmentation rates to fluctuate severely. By
considering the communication pattern of workers, Titan can
utilize non-idle machines to reduce the machine fragmentation
rate when placing workers of jobs.

Summary. By trying to utilize the non-idle machines and
carefully consider the collective communication overhead,
Titan reduces the number of used idle machines, the machine
fragmentation rate and communication overhead, as a result,
improves the total profit of the cluster.

C. Testbed Settings and Results

Settings. We build the testbed with 8 servers and 1 switch.
Each server has one NVIDIA GeForce RTX 3090, a 22-core
Intel Xeon 6152 processor, and a Mellanox ConnectX-6 100G
dual-port NIC. All the servers run Ubuntu 18.04 with CUDA
11.6. The NIC driver of all servers is Mellanox driver OFED
5.51.0.3.2. These servers and the switch are connected by 100
Gbps links. Due to the limitation of our machines, we use
docker to simulate multiple GPUs in one server, similar to
[37]. Specifically, we divide one physical server into 4 docker
containers, each with 1 GPU. These docker containers share

one physical GPU in reality. Ultimately, we get a testbed with
32 devices (virtualized GPUs) across 8 machines.

To simulate the resource fragmentation of machines, we run
several background training jobs on these machines. Specifi-
cally, The number of background jobs ranges from 0-3, where
one background job trains ResNet-50 [38] with one device.

Workloads. We use two image classification models and
the Cifar-100 dataset [39] in our experiments. The models
include: ResNet-50 [38] and VGG-16 [40]. Referring to the
settings in [41], during the experiments, we set the learning
rate to 0.1 for ResNet-50 and 0.01 for VGG-16. The Cifar-
100 dataset contains 60000 images (50000 for training and
10000 for testing), labeled in 100 classes. By default, we
set the batch size to 512 and perform 200 training epochs
for each DT job. We implement HD allreduce algorithm
based on gloo [42], and invoke the corresponding backend
in pytorch.distributed.

Worker placement result. In the testbed, we calculate the
worker placement solution of the DT job with different models
and scales (i.e., number of workers), then specify the map of
logical workers to physical devices and launch the DT job.
We illustrate the detailed placement results of DT jobs with
4 workers as follows and present the result of placing 6-12
workers in Fig. 8. We use Tiresias-R to denote the placement
result of Tiresias for ResNet-50 and Tiresias-V to denote that
of Tiresias for VGG-16. The gray rectangles in Fig. 8 represent
the background training jobs, and colored rectangles represent
workers placed in the corresponding machines. We can see
that, as the number of workers increases, Titan can remain
one idle machine even there places 12 workers.

(Exp#5) Comparison on total machine hour. In this set of
experiments, we calculate the total machine launching time in
the testbed and record the machine hour in Fig. 9. We can
see that Titan can always achieve the least machine hour. For
example, in Fig. 9(b), when the number of workers is 8, the
total machine hour of Titan, Elasticflow, Tiresias and HiveD is
8.67, 11.11, 11.12, and 12.33, respectively. Titan reduces the
total machine hour by 21.9%, 22% and 29.7%, compared with
other benchmarks. The reason is that we try not to launch idle
machines, and reduce the allreduce communication overhead
to guarantee the training performance over non-idle machines.

(Exp#6) Comparison on training throughput. In this set of
experiments, we modify the number of workers and evaluate
the training throughput performance. The evaluation results are
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Fig. 9: Machine Hour vs. No. of Workers
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Fig. 10: Training Throughput vs. No. of Workers
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Fig. 11: Communication Time vs. No. of Workers
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Fig. 12: Test Accuracy vs. Training Time

shown in Fig. 10. We increase the number of workers from 4 to
12 with an increment of 2. The experimental results show that
Elasticflow always achieves the highest training throughput
as the number of workers increases and Titan can achieve a
similar performance compared with Elasticflow. For example,
given 12 workers in Fig. 10(a), the training throughputs of
Elasticflow, Titan, Tiresias, and HiveD are 4422, 4389, 4208,
and 2610 images/s, respectively. Titan can achieve the perfor-
mance of Elasticflow by 99.3%. The reason is that Elasticflow
tries to place workers in as few idle servers as possible to
minimize cross-server communication. Titan firstly try to use
as few number of idle servers to save the cost, then use as few
number of servers to reduce cross-machine communication.
Moreover, Titan carefully considers the worker placement
according to the allreduce communication pattern to further
reduce communication overhead. Therefore Titan can achieve
similar performance with benchmarks.

(Exp#7) Comparison on communication time. This set
of evaluations varies the number of workers and compares
the per-epoch communication time performance of different
solutions. Note that, each epoch consists of three phases: local
training phase, allreduce communication phase, and parame-
ter synchronization phase. Since different worker placement
strategies only influence the allreduce communication phase,
we only record the communication time as shown in Fig. 11.
Fig. 11 shows that, as the number of workers increases, the
communication time increases too. Under the fixed number
of workers, Elasticflow obtains the least per-epoch commu-
nication time among all solutions and Titan can achieve a
similar performance with Elasticflow. Given 8 workers in Fig.
11(b), the per-epoch communication time of Elasticflow, Titan,
Tiresias and HiveD are 8.4s, 8.7s, 8.3s and 12s, respectively.
Note that, for VGG-16, Tiresias performs the same worker
placement strategy with Elasticflow (i.e., use 2 idle servers
to place 8 workers), therefore achieving similar performance.

Titan only increases the communication time by 3.5% and
4.8% compared with Elasticflow and Tiresias, respectively.

In Fig. 12, we further record the test accuracy versus
training time for the DT jobs containing 8 workers. For
example, given ResNet-50 in Fig. 12(a), Titan reaches an
accuracy of 0.7140 in 3486s while the time of Elasticflow,
Tiresias, and HiveD are 3147s, 3390s, and 4964s, respectively.
It shows that Titan achieves a similar test accuracy compared
with other alternatives.

Summary. By minimizing the number of used idle machines
when placing workers, Titan spends the least machine hours
while achieving near-optimal training performance. Compared
with fragmentation-aware worker placement solution, Titan
can reduce the communication overhead by considering the
allreduce communication constraint.

VI. CONCLUSION

In this paper, we present Titan, a novel non-idle machine-
aware worker placement scheme to improve the resource uti-
lization rate of GPU clusters. We formulate a multi-objectives
non-linear problem and propose a submodular-based algorithm
to solve it. Extensive large-scale simulation and small-scale
testbed experiment results show that Titan can achieve near-
optimal distributed training performance while improving the
cluster profit rate.
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